mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
8cd6ed3e1e
Update typos in documentation string in databricks chat model
54 lines
1.5 KiB
Python
54 lines
1.5 KiB
Python
import logging
|
|
from urllib.parse import urlparse
|
|
|
|
from langchain_community.chat_models.mlflow import ChatMlflow
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatDatabricks(ChatMlflow):
|
|
"""`Databricks` chat models API.
|
|
|
|
To use, you should have the ``mlflow`` python package installed.
|
|
For more information, see https://mlflow.org/docs/latest/llms/deployments.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatDatabricks
|
|
|
|
chat_model = ChatDatabricks(
|
|
target_uri="databricks",
|
|
endpoint="databricks-llama-2-70b-chat",
|
|
temperature=0.1,
|
|
)
|
|
|
|
# single input invocation
|
|
print(chat_model.invoke("What is MLflow?").content)
|
|
|
|
# single input invocation with streaming response
|
|
for chunk in chat_model.stream("What is MLflow?"):
|
|
print(chunk.content, end="|")
|
|
"""
|
|
|
|
target_uri: str = "databricks"
|
|
"""The target URI to use. Defaults to ``databricks``."""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "databricks-chat"
|
|
|
|
@property
|
|
def _mlflow_extras(self) -> str:
|
|
return ""
|
|
|
|
def _validate_uri(self) -> None:
|
|
if self.target_uri == "databricks":
|
|
return
|
|
|
|
if urlparse(self.target_uri).scheme != "databricks":
|
|
raise ValueError(
|
|
"Invalid target URI. The target URI must be a valid databricks URI."
|
|
)
|