mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
123 lines
3.8 KiB
Python
123 lines
3.8 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
from urllib.parse import urlparse
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models import LLM
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, PrivateAttr
|
|
|
|
|
|
# Ignoring type because below is valid pydantic code
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class Params(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Parameters for MLflow"""
|
|
|
|
temperature: float = 0.0
|
|
n: int = 1
|
|
stop: Optional[List[str]] = None
|
|
max_tokens: Optional[int] = None
|
|
|
|
|
|
class Mlflow(LLM):
|
|
"""Wrapper around completions LLMs in MLflow.
|
|
|
|
To use, you should have the `mlflow[genai]` python package installed.
|
|
For more information, see https://mlflow.org/docs/latest/llms/deployments/server.html.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import Mlflow
|
|
|
|
completions = Mlflow(
|
|
target_uri="http://localhost:5000",
|
|
endpoint="test",
|
|
params={"temperature": 0.1}
|
|
)
|
|
"""
|
|
|
|
endpoint: str
|
|
"""The endpoint to use."""
|
|
target_uri: str
|
|
"""The target URI to use."""
|
|
temperature: float = 0.0
|
|
"""The sampling temperature."""
|
|
n: int = 1
|
|
"""The number of completion choices to generate."""
|
|
stop: Optional[List[str]] = None
|
|
"""The stop sequence."""
|
|
max_tokens: Optional[int] = None
|
|
"""The maximum number of tokens to generate."""
|
|
extra_params: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Any extra parameters to pass to the endpoint."""
|
|
|
|
"""Extra parameters such as `temperature`."""
|
|
_client: Any = PrivateAttr()
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
self._validate_uri()
|
|
try:
|
|
from mlflow.deployments import get_deploy_client
|
|
|
|
self._client = get_deploy_client(self.target_uri)
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Failed to create the client. "
|
|
"Please run `pip install mlflow[genai]` to install "
|
|
"required dependencies."
|
|
) from e
|
|
|
|
def _validate_uri(self) -> None:
|
|
if self.target_uri == "databricks":
|
|
return
|
|
allowed = ["http", "https", "databricks"]
|
|
if urlparse(self.target_uri).scheme not in allowed:
|
|
raise ValueError(
|
|
f"Invalid target URI: {self.target_uri}. "
|
|
f"The scheme must be one of {allowed}."
|
|
)
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
return {
|
|
"target_uri": self.target_uri,
|
|
"endpoint": self.endpoint,
|
|
"temperature": self.temperature,
|
|
"n": self.n,
|
|
"stop": self.stop,
|
|
"max_tokens": self.max_tokens,
|
|
"extra_params": self.extra_params,
|
|
}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
return self._default_params
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
data: Dict[str, Any] = {
|
|
"prompt": prompt,
|
|
"temperature": self.temperature,
|
|
"n": self.n,
|
|
**self.extra_params,
|
|
**kwargs,
|
|
}
|
|
if stop := self.stop or stop:
|
|
data["stop"] = stop
|
|
if self.max_tokens is not None:
|
|
data["max_tokens"] = self.max_tokens
|
|
|
|
resp = self._client.predict(endpoint=self.endpoint, inputs=data)
|
|
return resp["choices"][0]["text"]
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "mlflow"
|