mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
292 lines
10 KiB
Python
292 lines
10 KiB
Python
import json
|
|
import urllib.request
|
|
import warnings
|
|
from abc import abstractmethod
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import BaseModel, validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
class AzureMLEndpointClient(object):
|
|
"""AzureML Managed Endpoint client."""
|
|
|
|
def __init__(
|
|
self, endpoint_url: str, endpoint_api_key: str, deployment_name: str = ""
|
|
) -> None:
|
|
"""Initialize the class."""
|
|
if not endpoint_api_key or not endpoint_url:
|
|
raise ValueError(
|
|
"""A key/token and REST endpoint should
|
|
be provided to invoke the endpoint"""
|
|
)
|
|
self.endpoint_url = endpoint_url
|
|
self.endpoint_api_key = endpoint_api_key
|
|
self.deployment_name = deployment_name
|
|
|
|
def call(self, body: bytes, **kwargs: Any) -> bytes:
|
|
"""call."""
|
|
|
|
# The azureml-model-deployment header will force the request to go to a
|
|
# specific deployment. Remove this header to have the request observe the
|
|
# endpoint traffic rules.
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": ("Bearer " + self.endpoint_api_key),
|
|
}
|
|
if self.deployment_name != "":
|
|
headers["azureml-model-deployment"] = self.deployment_name
|
|
|
|
req = urllib.request.Request(self.endpoint_url, body, headers)
|
|
response = urllib.request.urlopen(req, timeout=kwargs.get("timeout", 50))
|
|
result = response.read()
|
|
return result
|
|
|
|
|
|
class ContentFormatterBase:
|
|
"""Transform request and response of AzureML endpoint to match with
|
|
required schema.
|
|
"""
|
|
|
|
"""
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
class ContentFormatter(ContentFormatterBase):
|
|
content_type = "application/json"
|
|
accepts = "application/json"
|
|
|
|
def format_request_payload(
|
|
self,
|
|
prompt: str,
|
|
model_kwargs: Dict
|
|
) -> bytes:
|
|
input_str = json.dumps(
|
|
{
|
|
"inputs": {"input_string": [prompt]},
|
|
"parameters": model_kwargs,
|
|
}
|
|
)
|
|
return str.encode(input_str)
|
|
|
|
def format_response_payload(self, output: str) -> str:
|
|
response_json = json.loads(output)
|
|
return response_json[0]["0"]
|
|
"""
|
|
content_type: Optional[str] = "application/json"
|
|
"""The MIME type of the input data passed to the endpoint"""
|
|
|
|
accepts: Optional[str] = "application/json"
|
|
"""The MIME type of the response data returned from the endpoint"""
|
|
|
|
@staticmethod
|
|
def escape_special_characters(prompt: str) -> str:
|
|
"""Escapes any special characters in `prompt`"""
|
|
escape_map = {
|
|
"\\": "\\\\",
|
|
'"': '\\"',
|
|
"\b": "\\b",
|
|
"\f": "\\f",
|
|
"\n": "\\n",
|
|
"\r": "\\r",
|
|
"\t": "\\t",
|
|
}
|
|
|
|
# Replace each occurrence of the specified characters with escaped versions
|
|
for escape_sequence, escaped_sequence in escape_map.items():
|
|
prompt = prompt.replace(escape_sequence, escaped_sequence)
|
|
|
|
return prompt
|
|
|
|
@abstractmethod
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
"""Formats the request body according to the input schema of
|
|
the model. Returns bytes or seekable file like object in the
|
|
format specified in the content_type request header.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
"""Formats the response body according to the output
|
|
schema of the model. Returns the data type that is
|
|
received from the response.
|
|
"""
|
|
|
|
|
|
class GPT2ContentFormatter(ContentFormatterBase):
|
|
"""Content handler for GPT2"""
|
|
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
prompt = ContentFormatterBase.escape_special_characters(prompt)
|
|
request_payload = json.dumps(
|
|
{"inputs": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs}
|
|
)
|
|
return str.encode(request_payload)
|
|
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
return json.loads(output)[0]["0"]
|
|
|
|
|
|
class OSSContentFormatter(GPT2ContentFormatter):
|
|
"""Deprecated: Kept for backwards compatibility
|
|
|
|
Content handler for LLMs from the OSS catalog."""
|
|
|
|
content_formatter: Any = None
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
warnings.warn(
|
|
"""`OSSContentFormatter` will be deprecated in the future.
|
|
Please use `GPT2ContentFormatter` instead.
|
|
"""
|
|
)
|
|
|
|
|
|
class HFContentFormatter(ContentFormatterBase):
|
|
"""Content handler for LLMs from the HuggingFace catalog."""
|
|
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
ContentFormatterBase.escape_special_characters(prompt)
|
|
request_payload = json.dumps(
|
|
{"inputs": [f'"{prompt}"'], "parameters": model_kwargs}
|
|
)
|
|
return str.encode(request_payload)
|
|
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
return json.loads(output)[0]["generated_text"]
|
|
|
|
|
|
class DollyContentFormatter(ContentFormatterBase):
|
|
"""Content handler for the Dolly-v2-12b model"""
|
|
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
prompt = ContentFormatterBase.escape_special_characters(prompt)
|
|
request_payload = json.dumps(
|
|
{
|
|
"input_data": {"input_string": [f'"{prompt}"']},
|
|
"parameters": model_kwargs,
|
|
}
|
|
)
|
|
return str.encode(request_payload)
|
|
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
return json.loads(output)[0]
|
|
|
|
|
|
class LlamaContentFormatter(ContentFormatterBase):
|
|
"""Content formatter for LLaMa"""
|
|
|
|
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
|
"""Formats the request according to the chosen api"""
|
|
prompt = ContentFormatterBase.escape_special_characters(prompt)
|
|
request_payload = json.dumps(
|
|
{
|
|
"input_data": {
|
|
"input_string": [f'"{prompt}"'],
|
|
"parameters": model_kwargs,
|
|
}
|
|
}
|
|
)
|
|
return str.encode(request_payload)
|
|
|
|
def format_response_payload(self, output: bytes) -> str:
|
|
"""Formats response"""
|
|
return json.loads(output)[0]["0"]
|
|
|
|
|
|
class AzureMLOnlineEndpoint(LLM, BaseModel):
|
|
"""Azure ML Online Endpoint models.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
azure_llm = AzureMLOnlineEndpoint(
|
|
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
|
|
endpoint_api_key="my-api-key",
|
|
content_formatter=content_formatter,
|
|
)
|
|
""" # noqa: E501
|
|
|
|
endpoint_url: str = ""
|
|
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
|
|
env var `AZUREML_ENDPOINT_URL`."""
|
|
|
|
endpoint_api_key: str = ""
|
|
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
|
|
env var `AZUREML_ENDPOINT_API_KEY`."""
|
|
|
|
deployment_name: str = ""
|
|
"""Deployment Name for Endpoint. NOT REQUIRED to call endpoint. Should be passed
|
|
to constructor or specified as env var `AZUREML_DEPLOYMENT_NAME`."""
|
|
|
|
http_client: Any = None #: :meta private:
|
|
|
|
content_formatter: Any = None
|
|
"""The content formatter that provides an input and output
|
|
transform function to handle formats between the LLM and
|
|
the endpoint"""
|
|
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
@validator("http_client", always=True, allow_reuse=True)
|
|
@classmethod
|
|
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
|
|
"""Validate that api key and python package exists in environment."""
|
|
endpoint_key = get_from_dict_or_env(
|
|
values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY"
|
|
)
|
|
endpoint_url = get_from_dict_or_env(
|
|
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
|
|
)
|
|
deployment_name = get_from_dict_or_env(
|
|
values, "deployment_name", "AZUREML_DEPLOYMENT_NAME", ""
|
|
)
|
|
http_client = AzureMLEndpointClient(endpoint_url, endpoint_key, deployment_name)
|
|
return http_client
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"deployment_name": self.deployment_name},
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "azureml_endpoint"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to an AzureML Managed Online endpoint.
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
Returns:
|
|
The string generated by the model.
|
|
Example:
|
|
.. code-block:: python
|
|
response = azureml_model("Tell me a joke.")
|
|
"""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
request_payload = self.content_formatter.format_request_payload(
|
|
prompt, _model_kwargs
|
|
)
|
|
response_payload = self.http_client.call(request_payload, **kwargs)
|
|
generated_text = self.content_formatter.format_response_payload(
|
|
response_payload
|
|
)
|
|
return generated_text
|