langchain/templates/sql-llama2/sql_llama2/chain.py
Leonid Ganeline 3a750e130c
templates: utilities import fix (#20679)
Updated imports from `from langchain.utilities` to `from
langchain_community.utilities`
2024-04-19 21:41:15 -04:00

84 lines
2.2 KiB
Python

from pathlib import Path
from langchain_community.llms import Replicate
from langchain_community.utilities import SQLDatabase
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnablePassthrough
# make sure to set REPLICATE_API_TOKEN in your environment
# use llama-2-13b model in replicate
replicate_id = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d" # noqa: E501
llm = Replicate(
model=replicate_id,
model_kwargs={"temperature": 0.01, "max_length": 500, "top_p": 1},
)
db_path = Path(__file__).parent / "nba_roster.db"
rel = db_path.relative_to(Path.cwd())
db_string = f"sqlite:///{rel}"
db = SQLDatabase.from_uri(db_string, sample_rows_in_table_info=0)
def get_schema(_):
return db.get_table_info()
def run_query(query):
return db.run(query)
template_query = """Based on the table schema below, write a SQL query that would answer the user's question:
{schema}
Question: {question}
SQL Query:""" # noqa: E501
prompt = ChatPromptTemplate.from_messages(
[
("system", "Given an input question, convert it to a SQL query. No pre-amble."),
("human", template_query),
]
)
sql_response = (
RunnablePassthrough.assign(schema=get_schema)
| prompt
| llm.bind(stop=["\nSQLResult:"])
| StrOutputParser()
)
template_response = """Based on the table schema below, question, sql query, and sql response, write a natural language response:
{schema}
Question: {question}
SQL Query: {query}
SQL Response: {response}""" # noqa: E501
prompt_response = ChatPromptTemplate.from_messages(
[
(
"system",
"Given an input question and SQL response, convert it to a natural "
"language answer. No pre-amble.",
),
("human", template_response),
]
)
# Supply the input types to the prompt
class InputType(BaseModel):
question: str
chain = (
RunnablePassthrough.assign(query=sql_response).with_types(input_type=InputType)
| RunnablePassthrough.assign(
schema=get_schema,
response=lambda x: db.run(x["query"]),
)
| prompt_response
| llm
)