mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ad502e8d50
Thank you for contributing to LangChain! **Description:** update to the Vectara / Langchain integration to integrate new Vectara capabilities: - Full RAG implemented as a Runnable with as_rag() - Vectara chat supported with as_chat() - Both support streaming response - Updated documentation and example notebook to reflect all the changes - Updated Vectara templates **Twitter handle:** ofermend **Add tests and docs**: no new tests or docs, but updated both existing tests and existing docs
30 lines
1017 B
Python
30 lines
1017 B
Python
import os
|
|
|
|
from langchain_community.vectorstores import Vectara
|
|
from langchain_community.vectorstores.vectara import SummaryConfig, VectaraQueryConfig
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
if os.environ.get("VECTARA_CUSTOMER_ID", None) is None:
|
|
raise Exception("Missing `VECTARA_CUSTOMER_ID` environment variable.")
|
|
if os.environ.get("VECTARA_CORPUS_ID", None) is None:
|
|
raise Exception("Missing `VECTARA_CORPUS_ID` environment variable.")
|
|
if os.environ.get("VECTARA_API_KEY", None) is None:
|
|
raise Exception("Missing `VECTARA_API_KEY` environment variable.")
|
|
|
|
# Setup the Vectara vectorstore with your Corpus ID and API Key
|
|
vectara = Vectara()
|
|
|
|
# Define the query configuration:
|
|
summary_config = SummaryConfig(is_enabled=True, max_results=5, response_lang="eng")
|
|
config = VectaraQueryConfig(k=10, lambda_val=0.005, summary_config=summary_config)
|
|
|
|
rag = Vectara().as_rag(config)
|
|
|
|
|
|
# Add typing for input
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
chain = rag.with_types(input_type=Question)
|