mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
2443e85533
docs: fix milvus import problem update milvus-rag template with milvus-lite Signed-off-by: ChengZi <chen.zhang@zilliz.com>
80 lines
2.4 KiB
Python
80 lines
2.4 KiB
Python
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
from langchain_milvus.vectorstores import Milvus
|
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
|
|
|
# Example for document loading (from url), splitting, and creating vectorstore
|
|
|
|
# Setting the URI as a local file, e.g.`./milvus.db`, is the most convenient method,
|
|
# as it automatically utilizes Milvus Lite to store all data in this file.
|
|
#
|
|
# If you have large scale of data such as more than a million docs,
|
|
# we recommend setting up a more performant Milvus server on docker or kubernetes.
|
|
# (https://milvus.io/docs/quickstart.md)
|
|
# When using this setup, please use the server URI,
|
|
# e.g.`http://localhost:19530`, as your URI.
|
|
|
|
URI = "./milvus.db"
|
|
|
|
"""
|
|
# Load
|
|
from langchain_community.document_loaders import WebBaseLoader
|
|
|
|
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
|
data = loader.load()
|
|
|
|
# Split
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
all_splits = text_splitter.split_documents(data)
|
|
|
|
# Add to vectorDB
|
|
vectorstore = Milvus.from_documents(documents=all_splits,
|
|
collection_name="rag_milvus",
|
|
embedding=OpenAIEmbeddings(),
|
|
drop_old=True,
|
|
connection_args={"uri": URI},
|
|
)
|
|
retriever = vectorstore.as_retriever()
|
|
"""
|
|
|
|
# Embed a single document as a test
|
|
vectorstore = Milvus.from_texts(
|
|
["harrison worked at kensho"],
|
|
collection_name="rag_milvus",
|
|
embedding=OpenAIEmbeddings(),
|
|
drop_old=True,
|
|
connection_args={"uri": URI},
|
|
)
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
# RAG prompt
|
|
template = """Answer the question based only on the following context:
|
|
{context}
|
|
|
|
Question: {question}
|
|
"""
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
# LLM
|
|
model = ChatOpenAI()
|
|
|
|
# RAG chain
|
|
chain = (
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
| prompt
|
|
| model
|
|
| StrOutputParser()
|
|
)
|
|
|
|
|
|
# Add typing for input
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|