langchain/templates/anthropic-iterative-search/anthropic_iterative_search/chain.py
donbr de496062b3
templates: migrate to langchain_anthropic package to support Claude 3 models (#19393)
- **Description:** update langchain anthropic templates to support
Claude 3 (iterative search, chain of note, summarization, and XML
response)
- **Issue:** issue # N/A. Stability issues and errors encountered when
trying to use older langchain and anthropic libraries.
- **Dependencies:**
  - langchain_anthropic version 0.1.4\
- anthropic package version in the range ">=0.17.0,<1" to support
langchain_anthropic.
- **Twitter handle:** @d_w_b7


- [ x]**Add tests and docs**: If you're adding a new integration, please
include
  1. used instructions in the README for testing

- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-06 00:33:59 +00:00

38 lines
1005 B
Python

from langchain_anthropic import ChatAnthropic
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import ConfigurableField
from .prompts import answer_prompt
from .retriever_agent import executor
prompt = ChatPromptTemplate.from_template(answer_prompt)
model = ChatAnthropic(
model="claude-3-sonnet-20240229", temperature=0, max_tokens_to_sample=1000
)
chain = (
{"query": lambda x: x["query"], "information": executor | (lambda x: x["output"])}
| prompt
| model
| StrOutputParser()
)
# Add typing for the inputs to be used in the playground
class Inputs(BaseModel):
query: str
chain = chain.with_types(input_type=Inputs)
chain = chain.configurable_alternatives(
ConfigurableField(id="chain"),
default_key="response",
# This adds a new option, with name `openai` that is equal to `ChatOpenAI()`
retrieve=executor,
)