langchain/libs/community/tests/unit_tests/chat_models/test_openai.py
Luiz Ferreira 34d2daffb3
community[patch]: Fix chat openai unit test (#17124)
- **Description:** 
Actually the test named `test_openai_apredict` isn't testing the
apredict method from ChatOpenAI.
  - **Twitter handle:**
  https://twitter.com/OAlmofadas
2024-02-07 22:08:26 -05:00

124 lines
3.2 KiB
Python

"""Test OpenAI Chat API wrapper."""
import json
from typing import Any
from unittest.mock import MagicMock, patch
import pytest
from langchain_core.messages import (
AIMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain_community.adapters.openai import convert_dict_to_message
from langchain_community.chat_models.openai import ChatOpenAI
@pytest.mark.requires("openai")
def test_openai_model_param() -> None:
llm = ChatOpenAI(model="foo", openai_api_key="foo")
assert llm.model_name == "foo"
llm = ChatOpenAI(model_name="foo", openai_api_key="foo")
assert llm.model_name == "foo"
def test_function_message_dict_to_function_message() -> None:
content = json.dumps({"result": "Example #1"})
name = "test_function"
result = convert_dict_to_message(
{
"role": "function",
"name": name,
"content": content,
}
)
assert isinstance(result, FunctionMessage)
assert result.name == name
assert result.content == content
def test__convert_dict_to_message_human() -> None:
message = {"role": "user", "content": "foo"}
result = convert_dict_to_message(message)
expected_output = HumanMessage(content="foo")
assert result == expected_output
def test__convert_dict_to_message_ai() -> None:
message = {"role": "assistant", "content": "foo"}
result = convert_dict_to_message(message)
expected_output = AIMessage(content="foo")
assert result == expected_output
def test__convert_dict_to_message_system() -> None:
message = {"role": "system", "content": "foo"}
result = convert_dict_to_message(message)
expected_output = SystemMessage(content="foo")
assert result == expected_output
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "chatcmpl-7fcZavknQda3SQ",
"object": "chat.completion",
"created": 1689989000,
"model": "gpt-3.5-turbo-0613",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Bar Baz",
},
"finish_reason": "stop",
}
],
}
@pytest.mark.requires("openai")
def test_openai_predict(mock_completion: dict) -> None:
llm = ChatOpenAI(openai_api_key="foo")
mock_client = MagicMock()
completed = False
def mock_create(*args: Any, **kwargs: Any) -> Any:
nonlocal completed
completed = True
return mock_completion
mock_client.create = mock_create
with patch.object(
llm,
"client",
mock_client,
):
res = llm.predict("bar")
assert res == "Bar Baz"
assert completed
@pytest.mark.requires("openai")
async def test_openai_apredict(mock_completion: dict) -> None:
llm = ChatOpenAI(openai_api_key="foo")
mock_client = MagicMock()
completed = False
async def mock_create(*args: Any, **kwargs: Any) -> Any:
nonlocal completed
completed = True
return mock_completion
mock_client.create = mock_create
with patch.object(
llm,
"async_client",
mock_client,
):
res = await llm.apredict("bar")
assert res == "Bar Baz"
assert completed