mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
af5ae24af2
Related to #17048
584 lines
20 KiB
Python
584 lines
20 KiB
Python
import json
|
|
import tempfile
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Sequence, Union
|
|
|
|
from langchain_core.agents import AgentAction, AgentFinish
|
|
from langchain_core.callbacks import BaseCallbackHandler
|
|
from langchain_core.outputs import LLMResult
|
|
|
|
from langchain_community.callbacks.utils import (
|
|
BaseMetadataCallbackHandler,
|
|
flatten_dict,
|
|
hash_string,
|
|
import_pandas,
|
|
import_spacy,
|
|
import_textstat,
|
|
)
|
|
|
|
|
|
def import_wandb() -> Any:
|
|
"""Import the wandb python package and raise an error if it is not installed."""
|
|
try:
|
|
import wandb # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use the wandb callback manager you need to have the `wandb` python "
|
|
"package installed. Please install it with `pip install wandb`"
|
|
)
|
|
return wandb
|
|
|
|
|
|
def load_json_to_dict(json_path: Union[str, Path]) -> dict:
|
|
"""Load json file to a dictionary.
|
|
|
|
Parameters:
|
|
json_path (str): The path to the json file.
|
|
|
|
Returns:
|
|
(dict): The dictionary representation of the json file.
|
|
"""
|
|
with open(json_path, "r") as f:
|
|
data = json.load(f)
|
|
return data
|
|
|
|
|
|
def analyze_text(
|
|
text: str,
|
|
complexity_metrics: bool = True,
|
|
visualize: bool = True,
|
|
nlp: Any = None,
|
|
output_dir: Optional[Union[str, Path]] = None,
|
|
) -> dict:
|
|
"""Analyze text using textstat and spacy.
|
|
|
|
Parameters:
|
|
text (str): The text to analyze.
|
|
complexity_metrics (bool): Whether to compute complexity metrics.
|
|
visualize (bool): Whether to visualize the text.
|
|
nlp (spacy.lang): The spacy language model to use for visualization.
|
|
output_dir (str): The directory to save the visualization files to.
|
|
|
|
Returns:
|
|
(dict): A dictionary containing the complexity metrics and visualization
|
|
files serialized in a wandb.Html element.
|
|
"""
|
|
resp = {}
|
|
textstat = import_textstat()
|
|
wandb = import_wandb()
|
|
spacy = import_spacy()
|
|
if complexity_metrics:
|
|
text_complexity_metrics = {
|
|
"flesch_reading_ease": textstat.flesch_reading_ease(text),
|
|
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
|
|
"smog_index": textstat.smog_index(text),
|
|
"coleman_liau_index": textstat.coleman_liau_index(text),
|
|
"automated_readability_index": textstat.automated_readability_index(text),
|
|
"dale_chall_readability_score": textstat.dale_chall_readability_score(text),
|
|
"difficult_words": textstat.difficult_words(text),
|
|
"linsear_write_formula": textstat.linsear_write_formula(text),
|
|
"gunning_fog": textstat.gunning_fog(text),
|
|
"text_standard": textstat.text_standard(text),
|
|
"fernandez_huerta": textstat.fernandez_huerta(text),
|
|
"szigriszt_pazos": textstat.szigriszt_pazos(text),
|
|
"gutierrez_polini": textstat.gutierrez_polini(text),
|
|
"crawford": textstat.crawford(text),
|
|
"gulpease_index": textstat.gulpease_index(text),
|
|
"osman": textstat.osman(text),
|
|
}
|
|
resp.update(text_complexity_metrics)
|
|
|
|
if visualize and nlp and output_dir is not None:
|
|
doc = nlp(text)
|
|
|
|
dep_out = spacy.displacy.render(doc, style="dep", jupyter=False, page=True)
|
|
dep_output_path = Path(output_dir, hash_string(f"dep-{text}") + ".html")
|
|
dep_output_path.open("w", encoding="utf-8").write(dep_out)
|
|
|
|
ent_out = spacy.displacy.render(doc, style="ent", jupyter=False, page=True)
|
|
ent_output_path = Path(output_dir, hash_string(f"ent-{text}") + ".html")
|
|
ent_output_path.open("w", encoding="utf-8").write(ent_out)
|
|
|
|
text_visualizations = {
|
|
"dependency_tree": wandb.Html(str(dep_output_path)),
|
|
"entities": wandb.Html(str(ent_output_path)),
|
|
}
|
|
resp.update(text_visualizations)
|
|
|
|
return resp
|
|
|
|
|
|
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
|
|
"""Construct an html element from a prompt and a generation.
|
|
|
|
Parameters:
|
|
prompt (str): The prompt.
|
|
generation (str): The generation.
|
|
|
|
Returns:
|
|
(wandb.Html): The html element."""
|
|
wandb = import_wandb()
|
|
formatted_prompt = prompt.replace("\n", "<br>")
|
|
formatted_generation = generation.replace("\n", "<br>")
|
|
|
|
return wandb.Html(
|
|
f"""
|
|
<p style="color:black;">{formatted_prompt}:</p>
|
|
<blockquote>
|
|
<p style="color:green;">
|
|
{formatted_generation}
|
|
</p>
|
|
</blockquote>
|
|
""",
|
|
inject=False,
|
|
)
|
|
|
|
|
|
class WandbCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
|
|
"""Callback Handler that logs to Weights and Biases.
|
|
|
|
Parameters:
|
|
job_type (str): The type of job.
|
|
project (str): The project to log to.
|
|
entity (str): The entity to log to.
|
|
tags (list): The tags to log.
|
|
group (str): The group to log to.
|
|
name (str): The name of the run.
|
|
notes (str): The notes to log.
|
|
visualize (bool): Whether to visualize the run.
|
|
complexity_metrics (bool): Whether to log complexity metrics.
|
|
stream_logs (bool): Whether to stream callback actions to W&B
|
|
|
|
This handler will utilize the associated callback method called and formats
|
|
the input of each callback function with metadata regarding the state of LLM run,
|
|
and adds the response to the list of records for both the {method}_records and
|
|
action. It then logs the response using the run.log() method to Weights and Biases.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
job_type: Optional[str] = None,
|
|
project: Optional[str] = "langchain_callback_demo",
|
|
entity: Optional[str] = None,
|
|
tags: Optional[Sequence] = None,
|
|
group: Optional[str] = None,
|
|
name: Optional[str] = None,
|
|
notes: Optional[str] = None,
|
|
visualize: bool = False,
|
|
complexity_metrics: bool = False,
|
|
stream_logs: bool = False,
|
|
) -> None:
|
|
"""Initialize callback handler."""
|
|
|
|
wandb = import_wandb()
|
|
import_pandas()
|
|
import_textstat()
|
|
spacy = import_spacy()
|
|
super().__init__()
|
|
|
|
self.job_type = job_type
|
|
self.project = project
|
|
self.entity = entity
|
|
self.tags = tags
|
|
self.group = group
|
|
self.name = name
|
|
self.notes = notes
|
|
self.visualize = visualize
|
|
self.complexity_metrics = complexity_metrics
|
|
self.stream_logs = stream_logs
|
|
|
|
self.temp_dir = tempfile.TemporaryDirectory()
|
|
self.run = wandb.init(
|
|
job_type=self.job_type,
|
|
project=self.project,
|
|
entity=self.entity,
|
|
tags=self.tags,
|
|
group=self.group,
|
|
name=self.name,
|
|
notes=self.notes,
|
|
)
|
|
warning = (
|
|
"DEPRECATION: The `WandbCallbackHandler` will soon be deprecated in favor "
|
|
"of the `WandbTracer`. Please update your code to use the `WandbTracer` "
|
|
"instead."
|
|
)
|
|
wandb.termwarn(
|
|
warning,
|
|
repeat=False,
|
|
)
|
|
self.callback_columns: list = []
|
|
self.action_records: list = []
|
|
self.complexity_metrics = complexity_metrics
|
|
self.visualize = visualize
|
|
self.nlp = spacy.load("en_core_web_sm")
|
|
|
|
def _init_resp(self) -> Dict:
|
|
return {k: None for k in self.callback_columns}
|
|
|
|
def on_llm_start(
|
|
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
|
) -> None:
|
|
"""Run when LLM starts."""
|
|
self.step += 1
|
|
self.llm_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_llm_start"})
|
|
resp.update(flatten_dict(serialized))
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
for prompt in prompts:
|
|
prompt_resp = deepcopy(resp)
|
|
prompt_resp["prompts"] = prompt
|
|
self.on_llm_start_records.append(prompt_resp)
|
|
self.action_records.append(prompt_resp)
|
|
if self.stream_logs:
|
|
self.run.log(prompt_resp)
|
|
|
|
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
|
"""Run when LLM generates a new token."""
|
|
self.step += 1
|
|
self.llm_streams += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_llm_new_token", "token": token})
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self.on_llm_token_records.append(resp)
|
|
self.action_records.append(resp)
|
|
if self.stream_logs:
|
|
self.run.log(resp)
|
|
|
|
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
|
"""Run when LLM ends running."""
|
|
self.step += 1
|
|
self.llm_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_llm_end"})
|
|
resp.update(flatten_dict(response.llm_output or {}))
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
for generations in response.generations:
|
|
for generation in generations:
|
|
generation_resp = deepcopy(resp)
|
|
generation_resp.update(flatten_dict(generation.dict()))
|
|
generation_resp.update(
|
|
analyze_text(
|
|
generation.text,
|
|
complexity_metrics=self.complexity_metrics,
|
|
visualize=self.visualize,
|
|
nlp=self.nlp,
|
|
output_dir=self.temp_dir.name,
|
|
)
|
|
)
|
|
self.on_llm_end_records.append(generation_resp)
|
|
self.action_records.append(generation_resp)
|
|
if self.stream_logs:
|
|
self.run.log(generation_resp)
|
|
|
|
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
|
|
"""Run when LLM errors."""
|
|
self.step += 1
|
|
self.errors += 1
|
|
|
|
def on_chain_start(
|
|
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
|
|
) -> None:
|
|
"""Run when chain starts running."""
|
|
self.step += 1
|
|
self.chain_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_chain_start"})
|
|
resp.update(flatten_dict(serialized))
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
chain_input = inputs["input"]
|
|
|
|
if isinstance(chain_input, str):
|
|
input_resp = deepcopy(resp)
|
|
input_resp["input"] = chain_input
|
|
self.on_chain_start_records.append(input_resp)
|
|
self.action_records.append(input_resp)
|
|
if self.stream_logs:
|
|
self.run.log(input_resp)
|
|
elif isinstance(chain_input, list):
|
|
for inp in chain_input:
|
|
input_resp = deepcopy(resp)
|
|
input_resp.update(inp)
|
|
self.on_chain_start_records.append(input_resp)
|
|
self.action_records.append(input_resp)
|
|
if self.stream_logs:
|
|
self.run.log(input_resp)
|
|
else:
|
|
raise ValueError("Unexpected data format provided!")
|
|
|
|
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
|
"""Run when chain ends running."""
|
|
self.step += 1
|
|
self.chain_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_chain_end", "outputs": outputs["output"]})
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self.on_chain_end_records.append(resp)
|
|
self.action_records.append(resp)
|
|
if self.stream_logs:
|
|
self.run.log(resp)
|
|
|
|
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
|
|
"""Run when chain errors."""
|
|
self.step += 1
|
|
self.errors += 1
|
|
|
|
def on_tool_start(
|
|
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
|
|
) -> None:
|
|
"""Run when tool starts running."""
|
|
self.step += 1
|
|
self.tool_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_tool_start", "input_str": input_str})
|
|
resp.update(flatten_dict(serialized))
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self.on_tool_start_records.append(resp)
|
|
self.action_records.append(resp)
|
|
if self.stream_logs:
|
|
self.run.log(resp)
|
|
|
|
def on_tool_end(self, output: str, **kwargs: Any) -> None:
|
|
"""Run when tool ends running."""
|
|
self.step += 1
|
|
self.tool_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_tool_end", "output": output})
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self.on_tool_end_records.append(resp)
|
|
self.action_records.append(resp)
|
|
if self.stream_logs:
|
|
self.run.log(resp)
|
|
|
|
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
|
|
"""Run when tool errors."""
|
|
self.step += 1
|
|
self.errors += 1
|
|
|
|
def on_text(self, text: str, **kwargs: Any) -> None:
|
|
"""
|
|
Run when agent is ending.
|
|
"""
|
|
self.step += 1
|
|
self.text_ctr += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update({"action": "on_text", "text": text})
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self.on_text_records.append(resp)
|
|
self.action_records.append(resp)
|
|
if self.stream_logs:
|
|
self.run.log(resp)
|
|
|
|
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
|
|
"""Run when agent ends running."""
|
|
self.step += 1
|
|
self.agent_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update(
|
|
{
|
|
"action": "on_agent_finish",
|
|
"output": finish.return_values["output"],
|
|
"log": finish.log,
|
|
}
|
|
)
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self.on_agent_finish_records.append(resp)
|
|
self.action_records.append(resp)
|
|
if self.stream_logs:
|
|
self.run.log(resp)
|
|
|
|
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
|
|
"""Run on agent action."""
|
|
self.step += 1
|
|
self.tool_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = self._init_resp()
|
|
resp.update(
|
|
{
|
|
"action": "on_agent_action",
|
|
"tool": action.tool,
|
|
"tool_input": action.tool_input,
|
|
"log": action.log,
|
|
}
|
|
)
|
|
resp.update(self.get_custom_callback_meta())
|
|
self.on_agent_action_records.append(resp)
|
|
self.action_records.append(resp)
|
|
if self.stream_logs:
|
|
self.run.log(resp)
|
|
|
|
def _create_session_analysis_df(self) -> Any:
|
|
"""Create a dataframe with all the information from the session."""
|
|
pd = import_pandas()
|
|
on_llm_start_records_df = pd.DataFrame(self.on_llm_start_records)
|
|
on_llm_end_records_df = pd.DataFrame(self.on_llm_end_records)
|
|
|
|
llm_input_prompts_df = (
|
|
on_llm_start_records_df[["step", "prompts", "name"]]
|
|
.dropna(axis=1)
|
|
.rename({"step": "prompt_step"}, axis=1)
|
|
)
|
|
complexity_metrics_columns = []
|
|
visualizations_columns = []
|
|
|
|
if self.complexity_metrics:
|
|
complexity_metrics_columns = [
|
|
"flesch_reading_ease",
|
|
"flesch_kincaid_grade",
|
|
"smog_index",
|
|
"coleman_liau_index",
|
|
"automated_readability_index",
|
|
"dale_chall_readability_score",
|
|
"difficult_words",
|
|
"linsear_write_formula",
|
|
"gunning_fog",
|
|
"text_standard",
|
|
"fernandez_huerta",
|
|
"szigriszt_pazos",
|
|
"gutierrez_polini",
|
|
"crawford",
|
|
"gulpease_index",
|
|
"osman",
|
|
]
|
|
|
|
if self.visualize:
|
|
visualizations_columns = ["dependency_tree", "entities"]
|
|
|
|
llm_outputs_df = (
|
|
on_llm_end_records_df[
|
|
[
|
|
"step",
|
|
"text",
|
|
"token_usage_total_tokens",
|
|
"token_usage_prompt_tokens",
|
|
"token_usage_completion_tokens",
|
|
]
|
|
+ complexity_metrics_columns
|
|
+ visualizations_columns
|
|
]
|
|
.dropna(axis=1)
|
|
.rename({"step": "output_step", "text": "output"}, axis=1)
|
|
)
|
|
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
|
|
session_analysis_df["chat_html"] = session_analysis_df[
|
|
["prompts", "output"]
|
|
].apply(
|
|
lambda row: construct_html_from_prompt_and_generation(
|
|
row["prompts"], row["output"]
|
|
),
|
|
axis=1,
|
|
)
|
|
return session_analysis_df
|
|
|
|
def flush_tracker(
|
|
self,
|
|
langchain_asset: Any = None,
|
|
reset: bool = True,
|
|
finish: bool = False,
|
|
job_type: Optional[str] = None,
|
|
project: Optional[str] = None,
|
|
entity: Optional[str] = None,
|
|
tags: Optional[Sequence] = None,
|
|
group: Optional[str] = None,
|
|
name: Optional[str] = None,
|
|
notes: Optional[str] = None,
|
|
visualize: Optional[bool] = None,
|
|
complexity_metrics: Optional[bool] = None,
|
|
) -> None:
|
|
"""Flush the tracker and reset the session.
|
|
|
|
Args:
|
|
langchain_asset: The langchain asset to save.
|
|
reset: Whether to reset the session.
|
|
finish: Whether to finish the run.
|
|
job_type: The job type.
|
|
project: The project.
|
|
entity: The entity.
|
|
tags: The tags.
|
|
group: The group.
|
|
name: The name.
|
|
notes: The notes.
|
|
visualize: Whether to visualize.
|
|
complexity_metrics: Whether to compute complexity metrics.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
pd = import_pandas()
|
|
wandb = import_wandb()
|
|
action_records_table = wandb.Table(dataframe=pd.DataFrame(self.action_records))
|
|
session_analysis_table = wandb.Table(
|
|
dataframe=self._create_session_analysis_df()
|
|
)
|
|
self.run.log(
|
|
{
|
|
"action_records": action_records_table,
|
|
"session_analysis": session_analysis_table,
|
|
}
|
|
)
|
|
|
|
if langchain_asset:
|
|
langchain_asset_path = Path(self.temp_dir.name, "model.json")
|
|
model_artifact = wandb.Artifact(name="model", type="model")
|
|
model_artifact.add(action_records_table, name="action_records")
|
|
model_artifact.add(session_analysis_table, name="session_analysis")
|
|
try:
|
|
langchain_asset.save(langchain_asset_path)
|
|
model_artifact.add_file(str(langchain_asset_path))
|
|
model_artifact.metadata = load_json_to_dict(langchain_asset_path)
|
|
except ValueError:
|
|
langchain_asset.save_agent(langchain_asset_path)
|
|
model_artifact.add_file(str(langchain_asset_path))
|
|
model_artifact.metadata = load_json_to_dict(langchain_asset_path)
|
|
except NotImplementedError as e:
|
|
print("Could not save model.")
|
|
print(repr(e))
|
|
pass
|
|
self.run.log_artifact(model_artifact)
|
|
|
|
if finish or reset:
|
|
self.run.finish()
|
|
self.temp_dir.cleanup()
|
|
self.reset_callback_meta()
|
|
if reset:
|
|
self.__init__( # type: ignore
|
|
job_type=job_type if job_type else self.job_type,
|
|
project=project if project else self.project,
|
|
entity=entity if entity else self.entity,
|
|
tags=tags if tags else self.tags,
|
|
group=group if group else self.group,
|
|
name=name if name else self.name,
|
|
notes=notes if notes else self.notes,
|
|
visualize=visualize if visualize else self.visualize,
|
|
complexity_metrics=complexity_metrics
|
|
if complexity_metrics
|
|
else self.complexity_metrics,
|
|
)
|