mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
653 lines
20 KiB
Plaintext
653 lines
20 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Weights & Biases\n",
|
|
"\n",
|
|
"This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see.\n",
|
|
"\n",
|
|
"\n",
|
|
"<a href=\"https://colab.research.google.com/drive/1DXH4beT4HFaRKy_Vm4PoxhXVDRf7Ym8L?usp=sharing\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n",
|
|
"\n",
|
|
"\n",
|
|
"[View Report](https://wandb.ai/a-sh0ts/langchain_callback_demo/reports/Prompt-Engineering-LLMs-with-LangChain-and-W-B--VmlldzozNjk1NTUw#👋-how-to-build-a-callback-in-langchain-for-better-prompt-engineering\n",
|
|
") \n",
|
|
"\n",
|
|
"\n",
|
|
"**Note**: _the `WandbCallbackHandler` is being deprecated in favour of the `WandbTracer`_ . In future please use the `WandbTracer` as it is more flexible and allows for more granular logging. To know more about the `WandbTracer` refer to the [agent_with_wandb_tracing.html](https://python.langchain.com/en/latest/integrations/agent_with_wandb_tracing.html) notebook or use the following [colab notebook](http://wandb.me/prompts-quickstart). To know more about Weights & Biases Prompts refer to the following [prompts documentation](https://docs.wandb.ai/guides/prompts)."
|
|
],
|
|
"id": "e43f4ea0"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install wandb\n",
|
|
"!pip install pandas\n",
|
|
"!pip install textstat\n",
|
|
"!pip install spacy\n",
|
|
"!python -m spacy download en_core_web_sm"
|
|
],
|
|
"id": "fbe82fa5"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"id": "T1bSmKd6V2If"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"os.environ[\"WANDB_API_KEY\"] = \"\"\n",
|
|
"# os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
|
|
"# os.environ[\"SERPAPI_API_KEY\"] = \"\""
|
|
],
|
|
"id": "be90b9ec"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"id": "8WAGnTWpUUnD"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from datetime import datetime\n",
|
|
"from langchain.callbacks import WandbCallbackHandler, StdOutCallbackHandler\n",
|
|
"from langchain.llms import OpenAI"
|
|
],
|
|
"id": "46a9bd4d"
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"```\n",
|
|
"Callback Handler that logs to Weights and Biases.\n",
|
|
"\n",
|
|
"Parameters:\n",
|
|
" job_type (str): The type of job.\n",
|
|
" project (str): The project to log to.\n",
|
|
" entity (str): The entity to log to.\n",
|
|
" tags (list): The tags to log.\n",
|
|
" group (str): The group to log to.\n",
|
|
" name (str): The name of the run.\n",
|
|
" notes (str): The notes to log.\n",
|
|
" visualize (bool): Whether to visualize the run.\n",
|
|
" complexity_metrics (bool): Whether to log complexity metrics.\n",
|
|
" stream_logs (bool): Whether to stream callback actions to W&B\n",
|
|
"```"
|
|
],
|
|
"id": "849569b7"
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "cxBFfZR8d9FC"
|
|
},
|
|
"source": [
|
|
"```\n",
|
|
"Default values for WandbCallbackHandler(...)\n",
|
|
"\n",
|
|
"visualize: bool = False,\n",
|
|
"complexity_metrics: bool = False,\n",
|
|
"stream_logs: bool = False,\n",
|
|
"```\n"
|
|
],
|
|
"id": "718579f7"
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"NOTE: For beta workflows we have made the default analysis based on textstat and the visualizations based on spacy"
|
|
],
|
|
"id": "e5f067a1"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"id": "KAz8weWuUeXF"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mharrison-chase\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Tracking run with wandb version 0.14.0"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150408-e47j1914</code>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">llm</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The wandb callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/wandb/wandb/issues with the tag `langchain`.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"\"\"\"Main function.\n",
|
|
"\n",
|
|
"This function is used to try the callback handler.\n",
|
|
"Scenarios:\n",
|
|
"1. OpenAI LLM\n",
|
|
"2. Chain with multiple SubChains on multiple generations\n",
|
|
"3. Agent with Tools\n",
|
|
"\"\"\"\n",
|
|
"session_group = datetime.now().strftime(\"%m.%d.%Y_%H.%M.%S\")\n",
|
|
"wandb_callback = WandbCallbackHandler(\n",
|
|
" job_type=\"inference\",\n",
|
|
" project=\"langchain_callback_demo\",\n",
|
|
" group=f\"minimal_{session_group}\",\n",
|
|
" name=\"llm\",\n",
|
|
" tags=[\"test\"],\n",
|
|
")\n",
|
|
"callbacks = [StdOutCallbackHandler(), wandb_callback]\n",
|
|
"llm = OpenAI(temperature=0, callbacks=callbacks)"
|
|
],
|
|
"id": "4ddf7dce"
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Q-65jwrDeK6w"
|
|
},
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"```\n",
|
|
"# Defaults for WandbCallbackHandler.flush_tracker(...)\n",
|
|
"\n",
|
|
"reset: bool = True,\n",
|
|
"finish: bool = False,\n",
|
|
"```\n",
|
|
"\n"
|
|
],
|
|
"id": "f684905f"
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The `flush_tracker` function is used to log LangChain sessions to Weights & Biases. It takes in the LangChain module or agent, and logs at minimum the prompts and generations alongside the serialized form of the LangChain module to the specified Weights & Biases project. By default we reset the session as opposed to concluding the session outright."
|
|
],
|
|
"id": "1c096610"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"id": "o_VmneyIUyx8"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View run <strong style=\"color:#cdcd00\">llm</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a><br/>Synced 5 W&B file(s), 2 media file(s), 5 artifact file(s) and 0 other file(s)"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Find logs at: <code>./wandb/run-20230318_150408-e47j1914/logs</code>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "0d7b4307ccdb450ea631497174fca2d1",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016745895149999985, max=1.0…"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Tracking run with wandb version 0.14.0"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150534-jyxma7hu</code>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">simple_sequential</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# SCENARIO 1 - LLM\n",
|
|
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
|
|
"wandb_callback.flush_tracker(llm, name=\"simple_sequential\")"
|
|
],
|
|
"id": "d68750d5"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"id": "trxslyb1U28Y"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.prompts import PromptTemplate\n",
|
|
"from langchain.chains import LLMChain"
|
|
],
|
|
"id": "839a528e"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"id": "uauQk10SUzF6"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View run <strong style=\"color:#cdcd00\">simple_sequential</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a><br/>Synced 4 W&B file(s), 2 media file(s), 6 artifact file(s) and 0 other file(s)"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Find logs at: <code>./wandb/run-20230318_150534-jyxma7hu/logs</code>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "dbdbf28fb8ed40a3a60218d2e6d1a987",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016736786816666675, max=1.0…"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Tracking run with wandb version 0.14.0"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150550-wzy59zjq</code>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">agent</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# SCENARIO 2 - Chain\n",
|
|
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
|
|
"Title: {title}\n",
|
|
"Playwright: This is a synopsis for the above play:\"\"\"\n",
|
|
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
|
|
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)\n",
|
|
"\n",
|
|
"test_prompts = [\n",
|
|
" {\n",
|
|
" \"title\": \"documentary about good video games that push the boundary of game design\"\n",
|
|
" },\n",
|
|
" {\"title\": \"cocaine bear vs heroin wolf\"},\n",
|
|
" {\"title\": \"the best in class mlops tooling\"},\n",
|
|
"]\n",
|
|
"synopsis_chain.apply(test_prompts)\n",
|
|
"wandb_callback.flush_tracker(synopsis_chain, name=\"agent\")"
|
|
],
|
|
"id": "44842d32"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"id": "_jN73xcPVEpI"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.agents import initialize_agent, load_tools\n",
|
|
"from langchain.agents import AgentType"
|
|
],
|
|
"id": "0c609071"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"id": "Gpq4rk6VT9cu"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
"\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n",
|
|
"Action: Search\n",
|
|
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
|
|
"Observation: \u001b[36;1m\u001b[1;3mDiCaprio had a steady girlfriend in Camila Morrone. He had been with the model turned actress for nearly five years, as they were first said to be dating at the end of 2017. And the now 26-year-old Morrone is no stranger to Hollywood.\u001b[0m\n",
|
|
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate her age raised to the 0.43 power.\n",
|
|
"Action: Calculator\n",
|
|
"Action Input: 26^0.43\u001b[0m\n",
|
|
"Observation: \u001b[33;1m\u001b[1;3mAnswer: 4.059182145592686\n",
|
|
"\u001b[0m\n",
|
|
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
|
"Final Answer: Leo DiCaprio's girlfriend is Camila Morrone and her current age raised to the 0.43 power is 4.059182145592686.\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
" View run <strong style=\"color:#cdcd00\">agent</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a><br/>Synced 5 W&B file(s), 2 media file(s), 7 artifact file(s) and 0 other file(s)"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"Find logs at: <code>./wandb/run-20230318_150550-wzy59zjq/logs</code>"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# SCENARIO 3 - Agent with Tools\n",
|
|
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm)\n",
|
|
"agent = initialize_agent(\n",
|
|
" tools,\n",
|
|
" llm,\n",
|
|
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
|
|
")\n",
|
|
"agent.run(\n",
|
|
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\",\n",
|
|
" callbacks=callbacks,\n",
|
|
")\n",
|
|
"wandb_callback.flush_tracker(agent, reset=False, finish=True)"
|
|
],
|
|
"id": "5e106cb8"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [],
|
|
"id": "2701d0de"
|
|
}
|
|
],
|
|
"metadata": {
|
|
"colab": {
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
} |