mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
1f9f4d8742
**Description:** This PR adds support for MLX models both chat (i.e., instruct) and llm (i.e., pretrained) types/ **Dependencies:** mlx, mlx_lm, transformers **Twitter handle:** @Prince_Canuma --------- Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
200 lines
6.1 KiB
Python
200 lines
6.1 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import Any, Iterator, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.pydantic_v1 import Extra
|
|
|
|
DEFAULT_MODEL_ID = "mlx-community/quantized-gemma-2b"
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class MLXPipeline(LLM):
|
|
"""MLX Pipeline API.
|
|
|
|
To use, you should have the ``mlx-lm`` python package installed.
|
|
|
|
Example using from_model_id:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import MLXPipeline
|
|
pipe = MLXPipeline.from_model_id(
|
|
model_id="mlx-community/quantized-gemma-2b",
|
|
pipeline_kwargs={"max_tokens": 10},
|
|
)
|
|
Example passing model and tokenizer in directly:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import MLXPipeline
|
|
from mlx_lm import load
|
|
model_id="mlx-community/quantized-gemma-2b"
|
|
model, tokenizer = load(model_id)
|
|
pipe = MLXPipeline(model=model, tokenizer=tokenizer)
|
|
"""
|
|
|
|
model_id: str = DEFAULT_MODEL_ID
|
|
"""Model name to use."""
|
|
model: Any #: :meta private:
|
|
"""Model."""
|
|
tokenizer: Any #: :meta private:
|
|
"""Tokenizer."""
|
|
tokenizer_config: Optional[dict] = None
|
|
"""
|
|
Configuration parameters specifically for the tokenizer.
|
|
Defaults to an empty dictionary.
|
|
"""
|
|
adapter_file: Optional[str] = None
|
|
"""
|
|
Path to the adapter file. If provided, applies LoRA layers to the model.
|
|
Defaults to None.
|
|
"""
|
|
lazy: bool = False
|
|
"""
|
|
If False eval the model parameters to make sure they are
|
|
loaded in memory before returning, otherwise they will be loaded
|
|
when needed. Default: ``False``
|
|
"""
|
|
pipeline_kwargs: Optional[dict] = None
|
|
"""Keyword arguments passed to the pipeline."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@classmethod
|
|
def from_model_id(
|
|
cls,
|
|
model_id: str,
|
|
tokenizer_config: Optional[dict] = None,
|
|
adapter_file: Optional[str] = None,
|
|
lazy: bool = False,
|
|
pipeline_kwargs: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> MLXPipeline:
|
|
"""Construct the pipeline object from model_id and task."""
|
|
try:
|
|
from mlx_lm import load
|
|
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import mlx_lm python package. "
|
|
"Please install it with `pip install mlx_lm`."
|
|
)
|
|
|
|
tokenizer_config = tokenizer_config or {}
|
|
if adapter_file:
|
|
model, tokenizer = load(model_id, tokenizer_config, adapter_file, lazy)
|
|
else:
|
|
model, tokenizer = load(model_id, tokenizer_config, lazy=lazy)
|
|
|
|
_pipeline_kwargs = pipeline_kwargs or {}
|
|
return cls(
|
|
model_id=model_id,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
tokenizer_config=tokenizer_config,
|
|
adapter_file=adapter_file,
|
|
lazy=lazy,
|
|
pipeline_kwargs=_pipeline_kwargs,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model_id": self.model_id,
|
|
"tokenizer_config": self.tokenizer_config,
|
|
"adapter_file": self.adapter_file,
|
|
"lazy": self.lazy,
|
|
"pipeline_kwargs": self.pipeline_kwargs,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "mlx_pipeline"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
try:
|
|
from mlx_lm import generate
|
|
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import mlx_lm python package. "
|
|
"Please install it with `pip install mlx_lm`."
|
|
)
|
|
|
|
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
|
|
|
return generate(self.model, self.tokenizer, prompt=prompt, **pipeline_kwargs)
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
try:
|
|
import mlx.core as mx
|
|
from mlx_lm.utils import generate_step
|
|
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import mlx_lm python package. "
|
|
"Please install it with `pip install mlx_lm`."
|
|
)
|
|
|
|
pipeline_kwargs = kwargs.get("pipeline_kwargs", self.pipeline_kwargs)
|
|
|
|
temp: float = pipeline_kwargs.get("temp", 0.0)
|
|
max_new_tokens: int = pipeline_kwargs.get("max_tokens", 100)
|
|
repetition_penalty: Optional[float] = pipeline_kwargs.get(
|
|
"repetition_penalty", None
|
|
)
|
|
repetition_context_size: Optional[int] = pipeline_kwargs.get(
|
|
"repetition_context_size", None
|
|
)
|
|
|
|
prompt = self.tokenizer.encode(prompt, return_tensors="np")
|
|
|
|
prompt_tokens = mx.array(prompt[0])
|
|
|
|
eos_token_id = self.tokenizer.eos_token_id
|
|
|
|
for (token, prob), n in zip(
|
|
generate_step(
|
|
prompt_tokens,
|
|
self.model,
|
|
temp,
|
|
repetition_penalty,
|
|
repetition_context_size,
|
|
),
|
|
range(max_new_tokens),
|
|
):
|
|
# identify text to yield
|
|
text: Optional[str] = None
|
|
text = self.tokenizer.decode(token.item())
|
|
|
|
# yield text, if any
|
|
if text:
|
|
chunk = GenerationChunk(text=text)
|
|
yield chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text)
|
|
|
|
# break if stop sequence found
|
|
if token == eos_token_id or (stop is not None and text in stop):
|
|
break
|