mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
c599732e1a
## Description This PR allows passing the HTMLSectionSplitter paths to xslt files. It does so by fixing two trivial bugs with how passed paths were being handled. It also changes the default value of the param `xslt_path` to `None` so the special case where the file was part of the langchain package could be handled. ## Issue #22175
319 lines
11 KiB
Python
319 lines
11 KiB
Python
from __future__ import annotations
|
|
|
|
import copy
|
|
import pathlib
|
|
from io import BytesIO, StringIO
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, TypedDict, cast
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_text_splitters.character import RecursiveCharacterTextSplitter
|
|
|
|
|
|
class ElementType(TypedDict):
|
|
"""Element type as typed dict."""
|
|
|
|
url: str
|
|
xpath: str
|
|
content: str
|
|
metadata: Dict[str, str]
|
|
|
|
|
|
class HTMLHeaderTextSplitter:
|
|
"""
|
|
Splitting HTML files based on specified headers.
|
|
Requires lxml package.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: List[Tuple[str, str]],
|
|
return_each_element: bool = False,
|
|
):
|
|
"""Create a new HTMLHeaderTextSplitter.
|
|
|
|
Args:
|
|
headers_to_split_on: list of tuples of headers we want to track mapped to
|
|
(arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4,
|
|
h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2)].
|
|
return_each_element: Return each element w/ associated headers.
|
|
"""
|
|
# Output element-by-element or aggregated into chunks w/ common headers
|
|
self.return_each_element = return_each_element
|
|
self.headers_to_split_on = sorted(headers_to_split_on)
|
|
|
|
def aggregate_elements_to_chunks(
|
|
self, elements: List[ElementType]
|
|
) -> List[Document]:
|
|
"""Combine elements with common metadata into chunks
|
|
|
|
Args:
|
|
elements: HTML element content with associated identifying info and metadata
|
|
"""
|
|
aggregated_chunks: List[ElementType] = []
|
|
|
|
for element in elements:
|
|
if (
|
|
aggregated_chunks
|
|
and aggregated_chunks[-1]["metadata"] == element["metadata"]
|
|
):
|
|
# If the last element in the aggregated list
|
|
# has the same metadata as the current element,
|
|
# append the current content to the last element's content
|
|
aggregated_chunks[-1]["content"] += " \n" + element["content"]
|
|
else:
|
|
# Otherwise, append the current element to the aggregated list
|
|
aggregated_chunks.append(element)
|
|
|
|
return [
|
|
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
|
for chunk in aggregated_chunks
|
|
]
|
|
|
|
def split_text_from_url(self, url: str) -> List[Document]:
|
|
"""Split HTML from web URL
|
|
|
|
Args:
|
|
url: web URL
|
|
"""
|
|
r = requests.get(url)
|
|
return self.split_text_from_file(BytesIO(r.content))
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
"""Split HTML text string
|
|
|
|
Args:
|
|
text: HTML text
|
|
"""
|
|
return self.split_text_from_file(StringIO(text))
|
|
|
|
def split_text_from_file(self, file: Any) -> List[Document]:
|
|
"""Split HTML file
|
|
|
|
Args:
|
|
file: HTML file
|
|
"""
|
|
try:
|
|
from lxml import etree
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import lxml, please install with `pip install lxml`."
|
|
) from e
|
|
# use lxml library to parse html document and return xml ElementTree
|
|
# Explicitly encoding in utf-8 allows non-English
|
|
# html files to be processed without garbled characters
|
|
parser = etree.HTMLParser(encoding="utf-8")
|
|
tree = etree.parse(file, parser)
|
|
|
|
# document transformation for "structure-aware" chunking is handled with xsl.
|
|
# see comments in html_chunks_with_headers.xslt for more detailed information.
|
|
xslt_path = pathlib.Path(__file__).parent / "xsl/html_chunks_with_headers.xslt"
|
|
xslt_tree = etree.parse(xslt_path)
|
|
transform = etree.XSLT(xslt_tree)
|
|
result = transform(tree)
|
|
result_dom = etree.fromstring(str(result))
|
|
|
|
# create filter and mapping for header metadata
|
|
header_filter = [header[0] for header in self.headers_to_split_on]
|
|
header_mapping = dict(self.headers_to_split_on)
|
|
|
|
# map xhtml namespace prefix
|
|
ns_map = {"h": "http://www.w3.org/1999/xhtml"}
|
|
|
|
# build list of elements from DOM
|
|
elements = []
|
|
for element in result_dom.findall("*//*", ns_map):
|
|
if element.findall("*[@class='headers']") or element.findall(
|
|
"*[@class='chunk']"
|
|
):
|
|
elements.append(
|
|
ElementType(
|
|
url=file,
|
|
xpath="".join(
|
|
[
|
|
node.text or ""
|
|
for node in element.findall("*[@class='xpath']", ns_map)
|
|
]
|
|
),
|
|
content="".join(
|
|
[
|
|
node.text or ""
|
|
for node in element.findall("*[@class='chunk']", ns_map)
|
|
]
|
|
),
|
|
metadata={
|
|
# Add text of specified headers to metadata using header
|
|
# mapping.
|
|
header_mapping[node.tag]: node.text or ""
|
|
for node in filter(
|
|
lambda x: x.tag in header_filter,
|
|
element.findall("*[@class='headers']/*", ns_map),
|
|
)
|
|
},
|
|
)
|
|
)
|
|
|
|
if not self.return_each_element:
|
|
return self.aggregate_elements_to_chunks(elements)
|
|
else:
|
|
return [
|
|
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
|
for chunk in elements
|
|
]
|
|
|
|
|
|
class HTMLSectionSplitter:
|
|
"""
|
|
Splitting HTML files based on specified tag and font sizes.
|
|
Requires lxml package.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: List[Tuple[str, str]],
|
|
xslt_path: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Create a new HTMLSectionSplitter.
|
|
|
|
Args:
|
|
headers_to_split_on: list of tuples of headers we want to track mapped to
|
|
(arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4,
|
|
h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2"].
|
|
xslt_path: path to xslt file for document transformation.
|
|
Uses a default if not passed.
|
|
Needed for html contents that using different format and layouts.
|
|
"""
|
|
self.headers_to_split_on = dict(headers_to_split_on)
|
|
|
|
if xslt_path is None:
|
|
self.xslt_path = (
|
|
pathlib.Path(__file__).parent / "xsl/converting_to_header.xslt"
|
|
).absolute()
|
|
else:
|
|
self.xslt_path = pathlib.Path(xslt_path).absolute()
|
|
self.kwargs = kwargs
|
|
|
|
def split_documents(self, documents: Iterable[Document]) -> List[Document]:
|
|
"""Split documents."""
|
|
texts, metadatas = [], []
|
|
for doc in documents:
|
|
texts.append(doc.page_content)
|
|
metadatas.append(doc.metadata)
|
|
results = self.create_documents(texts, metadatas=metadatas)
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(**self.kwargs)
|
|
|
|
return text_splitter.split_documents(results)
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
"""Split HTML text string
|
|
|
|
Args:
|
|
text: HTML text
|
|
"""
|
|
return self.split_text_from_file(StringIO(text))
|
|
|
|
def create_documents(
|
|
self, texts: List[str], metadatas: Optional[List[dict]] = None
|
|
) -> List[Document]:
|
|
"""Create documents from a list of texts."""
|
|
_metadatas = metadatas or [{}] * len(texts)
|
|
documents = []
|
|
for i, text in enumerate(texts):
|
|
for chunk in self.split_text(text):
|
|
metadata = copy.deepcopy(_metadatas[i])
|
|
|
|
for key in chunk.metadata.keys():
|
|
if chunk.metadata[key] == "#TITLE#":
|
|
chunk.metadata[key] = metadata["Title"]
|
|
metadata = {**metadata, **chunk.metadata}
|
|
new_doc = Document(page_content=chunk.page_content, metadata=metadata)
|
|
documents.append(new_doc)
|
|
return documents
|
|
|
|
def split_html_by_headers(
|
|
self, html_doc: str
|
|
) -> Dict[str, Dict[str, Optional[str]]]:
|
|
try:
|
|
from bs4 import BeautifulSoup, PageElement # type: ignore[import-untyped]
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import BeautifulSoup/PageElement, \
|
|
please install with `pip install \
|
|
bs4`."
|
|
) from e
|
|
|
|
soup = BeautifulSoup(html_doc, "html.parser")
|
|
headers = list(self.headers_to_split_on.keys())
|
|
sections: Dict[str, Dict[str, Optional[str]]] = {}
|
|
|
|
headers = soup.find_all(["body"] + headers)
|
|
|
|
for i, header in enumerate(headers):
|
|
header_element: PageElement = header
|
|
if i == 0:
|
|
current_header = "#TITLE#"
|
|
current_header_tag = "h1"
|
|
section_content: List = []
|
|
else:
|
|
current_header = header_element.text.strip()
|
|
current_header_tag = header_element.name
|
|
section_content = []
|
|
for element in header_element.next_elements:
|
|
if i + 1 < len(headers) and element == headers[i + 1]:
|
|
break
|
|
if isinstance(element, str):
|
|
section_content.append(element)
|
|
content = " ".join(section_content).strip()
|
|
|
|
if content != "":
|
|
sections[current_header] = {
|
|
"content": content,
|
|
"tag_name": current_header_tag,
|
|
}
|
|
|
|
return sections
|
|
|
|
def convert_possible_tags_to_header(self, html_content: str) -> str:
|
|
if self.xslt_path is None:
|
|
return html_content
|
|
|
|
try:
|
|
from lxml import etree
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import lxml, please install with `pip install lxml`."
|
|
) from e
|
|
# use lxml library to parse html document and return xml ElementTree
|
|
parser = etree.HTMLParser()
|
|
tree = etree.parse(StringIO(html_content), parser)
|
|
|
|
xslt_tree = etree.parse(self.xslt_path)
|
|
transform = etree.XSLT(xslt_tree)
|
|
result = transform(tree)
|
|
return str(result)
|
|
|
|
def split_text_from_file(self, file: Any) -> List[Document]:
|
|
"""Split HTML file
|
|
|
|
Args:
|
|
file: HTML file
|
|
"""
|
|
file_content = file.getvalue()
|
|
file_content = self.convert_possible_tags_to_header(file_content)
|
|
sections = self.split_html_by_headers(file_content)
|
|
|
|
return [
|
|
Document(
|
|
cast(str, sections[section_key]["content"]),
|
|
metadata={
|
|
self.headers_to_split_on[
|
|
str(sections[section_key]["tag_name"])
|
|
]: section_key
|
|
},
|
|
)
|
|
for section_key in sections.keys()
|
|
]
|