mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
d6ef5fe86a
**Description:** Adding chat completions to the Together AI package, which is our most popular API. Also staying backwards compatible with the old API so folks can continue to use the completions API as well. Also moved the embedding API to use the OpenAI library to standardize it further. **Twitter handle:** @nutlope - [x] **Add tests and docs**: If you're adding a new integration, please include - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17. --------- Co-authored-by: Erick Friis <erick@langchain.dev>
217 lines
7.7 KiB
Python
217 lines
7.7 KiB
Python
"""Wrapper around Together AI's Completion API."""
|
|
|
|
import logging
|
|
import warnings
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import requests
|
|
from aiohttp import ClientSession
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Together(LLM):
|
|
"""LLM models from `Together`.
|
|
|
|
To use, you'll need an API key which you can find here:
|
|
https://api.together.ai/settings/api-keys. This can be passed in as init param
|
|
``together_api_key`` or set as environment variable ``TOGETHER_API_KEY``.
|
|
|
|
Together AI API reference: https://docs.together.ai/reference/completions
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_together import Together
|
|
|
|
model = Together(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
"""
|
|
|
|
base_url: str = "https://api.together.ai/v1/completions"
|
|
"""Base completions API URL."""
|
|
together_api_key: SecretStr
|
|
"""Together AI API key. Get it here: https://api.together.ai/settings/api-keys"""
|
|
model: str
|
|
"""Model name. Available models listed here:
|
|
Base Models: https://docs.together.ai/docs/inference-models#language-models
|
|
Chat Models: https://docs.together.ai/docs/inference-models#chat-models
|
|
"""
|
|
temperature: Optional[float] = None
|
|
"""Model temperature."""
|
|
top_p: Optional[float] = None
|
|
"""Used to dynamically adjust the number of choices for each predicted token based
|
|
on the cumulative probabilities. A value of 1 will always yield the same
|
|
output. A temperature less than 1 favors more correctness and is appropriate
|
|
for question answering or summarization. A value greater than 1 introduces more
|
|
randomness in the output.
|
|
"""
|
|
top_k: Optional[int] = None
|
|
"""Used to limit the number of choices for the next predicted word or token. It
|
|
specifies the maximum number of tokens to consider at each step, based on their
|
|
probability of occurrence. This technique helps to speed up the generation
|
|
process and can improve the quality of the generated text by focusing on the
|
|
most likely options.
|
|
"""
|
|
max_tokens: Optional[int] = None
|
|
"""The maximum number of tokens to generate."""
|
|
repetition_penalty: Optional[float] = None
|
|
"""A number that controls the diversity of generated text by reducing the
|
|
likelihood of repeated sequences. Higher values decrease repetition.
|
|
"""
|
|
logprobs: Optional[int] = None
|
|
"""An integer that specifies how many top token log probabilities are included in
|
|
the response for each token generation step.
|
|
"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key exists in environment."""
|
|
values["together_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "together_api_key", "TOGETHER_API_KEY")
|
|
)
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_max_tokens(cls, values: Dict) -> Dict:
|
|
"""
|
|
The v1 completions endpoint, has max_tokens as required parameter.
|
|
Set a default value and warn if the parameter is missing.
|
|
"""
|
|
if values.get("max_tokens") is None:
|
|
warnings.warn(
|
|
"The completions endpoint, has 'max_tokens' as required argument. "
|
|
"The default value is being set to 200 "
|
|
"Consider setting this value, when initializing LLM"
|
|
)
|
|
values["max_tokens"] = 200 # Default Value
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of model."""
|
|
return "together"
|
|
|
|
def _format_output(self, output: dict) -> str:
|
|
return output["choices"][0]["text"]
|
|
|
|
@property
|
|
def default_params(self) -> Dict[str, Any]:
|
|
return {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"max_tokens": self.max_tokens,
|
|
"repetition_penalty": self.repetition_penalty,
|
|
}
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to Together's text generation endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
|
|
Returns:
|
|
The string generated by the model..
|
|
"""
|
|
|
|
headers = {
|
|
"Authorization": f"Bearer {self.together_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
|
payload: Dict[str, Any] = {
|
|
**self.default_params,
|
|
"prompt": prompt,
|
|
"stop": stop_to_use,
|
|
**kwargs,
|
|
}
|
|
|
|
# filter None values to not pass them to the http payload
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
response = requests.post(url=self.base_url, json=payload, headers=headers)
|
|
|
|
if response.status_code >= 500:
|
|
raise Exception(f"Together Server: Error {response.status_code}")
|
|
elif response.status_code >= 400:
|
|
raise ValueError(f"Together received an invalid payload: {response.text}")
|
|
elif response.status_code != 200:
|
|
raise Exception(
|
|
f"Together returned an unexpected response with status "
|
|
f"{response.status_code}: {response.text}"
|
|
)
|
|
|
|
data = response.json()
|
|
|
|
output = self._format_output(data)
|
|
|
|
return output
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call Together model to get predictions based on the prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
"""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.together_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
|
payload: Dict[str, Any] = {
|
|
**self.default_params,
|
|
"prompt": prompt,
|
|
"stop": stop_to_use,
|
|
**kwargs,
|
|
}
|
|
|
|
# filter None values to not pass them to the http payload
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
async with ClientSession() as session:
|
|
async with session.post(
|
|
self.base_url, json=payload, headers=headers
|
|
) as response:
|
|
if response.status >= 500:
|
|
raise Exception(f"Together Server: Error {response.status}")
|
|
elif response.status >= 400:
|
|
raise ValueError(
|
|
f"Together received an invalid payload: {response.text}"
|
|
)
|
|
elif response.status != 200:
|
|
raise Exception(
|
|
f"Together returned an unexpected response with status "
|
|
f"{response.status}: {response.text}"
|
|
)
|
|
|
|
response_json = await response.json()
|
|
|
|
output = self._format_output(response_json)
|
|
return output
|