langchain/docs/extras/integrations/document_loaders/airbyte_gong.ipynb
Joe Reuter 8f0cd91d57
Airbyte based loaders (#8586)
This PR adds 8 new loaders:
* `AirbyteCDKLoader` This reader can wrap and run all python-based
Airbyte source connectors.
* Separate loaders for the most commonly used APIs:
  * `AirbyteGongLoader`
  * `AirbyteHubspotLoader`
  * `AirbyteSalesforceLoader`
  * `AirbyteShopifyLoader`
  * `AirbyteStripeLoader`
  * `AirbyteTypeformLoader`
  * `AirbyteZendeskSupportLoader`

## Documentation and getting started
I added the basic shape of the config to the notebooks. This increases
the maintenance effort a bit, but I think it's worth it to make sure
people can get started quickly with these important connectors. This is
also why I linked the spec and the documentation page in the readme as
these two contain all the information to configure a source correctly
(e.g. it won't suggest using oauth if that's avoidable even if the
connector supports it).

## Document generation
The "documents" produced by these loaders won't have a text part
(instead, all the record fields are put into the metadata). If a text is
required by the use case, the caller needs to do custom transformation
suitable for their use case.

## Incremental sync
All loaders support incremental syncs if the underlying streams support
it. By storing the `last_state` from the reader instance away and
passing it in when loading, it will only load updated records.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 14:49:25 -07:00

207 lines
5.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "1f3a5ebf",
"metadata": {},
"source": [
"# Airbyte Gong"
]
},
{
"cell_type": "markdown",
"id": "35ac77b1-449b-44f7-b8f3-3494d55c286e",
"metadata": {},
"source": [
">[Airbyte](https://github.com/airbytehq/airbyte) is a data integration platform for ELT pipelines from APIs, databases & files to warehouses & lakes. It has the largest catalog of ELT connectors to data warehouses and databases.\n",
"\n",
"This loader exposes the Gong connector as a document loader, allowing you to load various Gong objects as documents."
]
},
{
"cell_type": "markdown",
"id": "6847a40c",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"id": "3b06fbde",
"metadata": {},
"source": [
"## Installation"
]
},
{
"cell_type": "markdown",
"id": "e3e9dc79",
"metadata": {},
"source": [
"First, you need to install the `airbyte-source-gong` python package."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d35e4e0",
"metadata": {},
"outputs": [],
"source": [
"#!pip install airbyte-source-gong"
]
},
{
"cell_type": "markdown",
"id": "ae855210",
"metadata": {},
"source": [
"## Example"
]
},
{
"cell_type": "markdown",
"id": "02208f52",
"metadata": {},
"source": [
"Check out the [Airbyte documentation page](https://docs.airbyte.com/integrations/sources/gong/) for details about how to configure the reader.\n",
"The JSON schema the config object should adhere to can be found on Github: [https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-gong/source_gong/spec.yaml](https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-gong/source_gong/spec.yaml).\n",
"\n",
"The general shape looks like this:\n",
"```python\n",
"{\n",
" \"access_key\": \"<access key name>\",\n",
" \"access_key_secret\": \"<access key secret>\",\n",
" \"start_date\": \"<date from which to start retrieving records from in ISO format, e.g. 2020-10-20T00:00:00Z>\",\n",
"}\n",
"```\n",
"\n",
"By default all fields are stored as metadata in the documents and the text is set to an empty string. Construct the text of the document by transforming the documents returned by the reader."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89a99e58",
"metadata": {},
"outputs": [],
"source": [
"\n",
"from langchain.document_loaders.airbyte import AirbyteGongLoader\n",
"\n",
"config = {\n",
" # your gong configuration\n",
"}\n",
"\n",
"loader = AirbyteGongLoader(config=config, stream_name=\"calls\") # check the documentation linked above for a list of all streams"
]
},
{
"cell_type": "markdown",
"id": "2cea23fc",
"metadata": {},
"source": [
"Now you can load documents the usual way"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dae75cdb",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1782db09",
"metadata": {},
"outputs": [],
"source": [
"docs_iterator = loader.lazy_load()"
]
},
{
"cell_type": "markdown",
"id": "3a124086",
"metadata": {},
"source": [
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To process documents, create a class inheriting from the base loader and implement the `_handle_records` method yourself:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5671395d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.docstore.document import Document\n",
"\n",
"def handle_record(record, id):\n",
" return Document(page_content=record.data[\"title\"], metadata=record.data)\n",
"\n",
"loader = AirbyteGongLoader(config=config, record_handler=handle_record, stream_name=\"calls\")\n",
"docs = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "223eb8bc",
"metadata": {},
"source": [
"## Incremental loads\n",
"\n",
"Some streams allow incremental loading, this means the source keeps track of synced records and won't load them again. This is useful for sources that have a high volume of data and are updated frequently.\n",
"\n",
"To take advantage of this, store the `last_state` property of the loader and pass it in when creating the loader again. This will ensure that only new records are loaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7061e735",
"metadata": {},
"outputs": [],
"source": [
"last_state = loader.last_state # store safely\n",
"\n",
"incremental_loader = AirbyteGongLoader(config=config, stream_name=\"calls\", state=last_state)\n",
"\n",
"new_docs = incremental_loader.load()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}