mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
422 lines
13 KiB
Python
422 lines
13 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
import uuid
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
ADA_TOKEN_COUNT = 1536
|
|
_LANGCHAIN_DEFAULT_TABLE_NAME = "langchain_pg_embedding"
|
|
|
|
|
|
class Hologres(VectorStore):
|
|
"""`Hologres API` vector store.
|
|
|
|
- `connection_string` is a hologres connection string.
|
|
- `embedding_function` any embedding function implementing
|
|
`langchain.embeddings.base.Embeddings` interface.
|
|
- `ndims` is the number of dimensions of the embedding output.
|
|
- `table_name` is the name of the table to store embeddings and data.
|
|
(default: langchain_pg_embedding)
|
|
- NOTE: The table will be created when initializing the store (if not exists)
|
|
So, make sure the user has the right permissions to create tables.
|
|
- `pre_delete_table` if True, will delete the table if it exists.
|
|
(default: False)
|
|
- Useful for testing.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
connection_string: str,
|
|
embedding_function: Embeddings,
|
|
ndims: int = ADA_TOKEN_COUNT,
|
|
table_name: str = _LANGCHAIN_DEFAULT_TABLE_NAME,
|
|
pre_delete_table: bool = False,
|
|
logger: Optional[logging.Logger] = None,
|
|
) -> None:
|
|
self.connection_string = connection_string
|
|
self.ndims = ndims
|
|
self.table_name = table_name
|
|
self.embedding_function = embedding_function
|
|
self.pre_delete_table = pre_delete_table
|
|
self.logger = logger or logging.getLogger(__name__)
|
|
self.__post_init__()
|
|
|
|
def __post_init__(
|
|
self,
|
|
) -> None:
|
|
"""
|
|
Initialize the store.
|
|
"""
|
|
from hologres_vector import HologresVector
|
|
|
|
self.storage = HologresVector(
|
|
self.connection_string,
|
|
ndims=self.ndims,
|
|
table_name=self.table_name,
|
|
table_schema={"document": "text"},
|
|
pre_delete_table=self.pre_delete_table,
|
|
)
|
|
|
|
@property
|
|
def embeddings(self) -> Embeddings:
|
|
return self.embedding_function
|
|
|
|
@classmethod
|
|
def __from(
|
|
cls,
|
|
texts: List[str],
|
|
embeddings: List[List[float]],
|
|
embedding_function: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
ndims: int = ADA_TOKEN_COUNT,
|
|
table_name: str = _LANGCHAIN_DEFAULT_TABLE_NAME,
|
|
pre_delete_table: bool = False,
|
|
**kwargs: Any,
|
|
) -> Hologres:
|
|
if ids is None:
|
|
ids = [str(uuid.uuid1()) for _ in texts]
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
store = cls(
|
|
connection_string=connection_string,
|
|
embedding_function=embedding_function,
|
|
ndims=ndims,
|
|
table_name=table_name,
|
|
pre_delete_table=pre_delete_table,
|
|
)
|
|
|
|
store.add_embeddings(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
)
|
|
|
|
return store
|
|
|
|
def add_embeddings(
|
|
self,
|
|
texts: Iterable[str],
|
|
embeddings: List[List[float]],
|
|
metadatas: List[dict],
|
|
ids: List[str],
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Add embeddings to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
embeddings: List of list of embedding vectors.
|
|
metadatas: List of metadatas associated with the texts.
|
|
kwargs: vectorstore specific parameters
|
|
"""
|
|
try:
|
|
schema_datas = [{"document": t} for t in texts]
|
|
self.storage.upsert_vectors(embeddings, ids, metadatas, schema_datas)
|
|
except Exception as e:
|
|
self.logger.exception(e)
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
kwargs: vectorstore specific parameters
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
"""
|
|
if ids is None:
|
|
ids = [str(uuid.uuid1()) for _ in texts]
|
|
|
|
embeddings = self.embedding_function.embed_documents(list(texts))
|
|
|
|
if not metadatas:
|
|
metadatas = [{} for _ in texts]
|
|
|
|
self.add_embeddings(texts, embeddings, metadatas, ids, **kwargs)
|
|
|
|
return ids
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Run similarity search with Hologres with distance.
|
|
|
|
Args:
|
|
query (str): Query text to search for.
|
|
k (int): Number of results to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query.
|
|
"""
|
|
embedding = self.embedding_function.embed_query(text=query)
|
|
return self.similarity_search_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
filter=filter,
|
|
)
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query vector.
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, filter=filter
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
embedding = self.embedding_function.embed_query(query)
|
|
docs = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, filter=filter
|
|
)
|
|
return docs
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[dict] = None,
|
|
) -> List[Tuple[Document, float]]:
|
|
results: List[dict[str, Any]] = self.storage.search(
|
|
embedding, k=k, select_columns=["document"], metadata_filters=filter
|
|
)
|
|
|
|
docs = [
|
|
(
|
|
Document(
|
|
page_content=result["document"],
|
|
metadata=result["metadata"],
|
|
),
|
|
result["distance"],
|
|
)
|
|
for result in results
|
|
]
|
|
return docs
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Type[Hologres],
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ndims: int = ADA_TOKEN_COUNT,
|
|
table_name: str = _LANGCHAIN_DEFAULT_TABLE_NAME,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_table: bool = False,
|
|
**kwargs: Any,
|
|
) -> Hologres:
|
|
"""
|
|
Return VectorStore initialized from texts and embeddings.
|
|
Hologres connection string is required
|
|
"Either pass it as a parameter
|
|
or set the HOLOGRES_CONNECTION_STRING environment variable.
|
|
Create the connection string by calling
|
|
HologresVector.connection_string_from_db_params
|
|
"""
|
|
embeddings = embedding.embed_documents(list(texts))
|
|
|
|
return cls.__from(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
ndims=ndims,
|
|
table_name=table_name,
|
|
pre_delete_table=pre_delete_table,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_embeddings(
|
|
cls,
|
|
text_embeddings: List[Tuple[str, List[float]]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ndims: int = ADA_TOKEN_COUNT,
|
|
table_name: str = _LANGCHAIN_DEFAULT_TABLE_NAME,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_table: bool = False,
|
|
**kwargs: Any,
|
|
) -> Hologres:
|
|
"""Construct Hologres wrapper from raw documents and pre-
|
|
generated embeddings.
|
|
|
|
Return VectorStore initialized from documents and embeddings.
|
|
Hologres connection string is required
|
|
"Either pass it as a parameter
|
|
or set the HOLOGRES_CONNECTION_STRING environment variable.
|
|
Create the connection string by calling
|
|
HologresVector.connection_string_from_db_params
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import Hologres
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
embeddings = OpenAIEmbeddings()
|
|
text_embeddings = embeddings.embed_documents(texts)
|
|
text_embedding_pairs = list(zip(texts, text_embeddings))
|
|
faiss = Hologres.from_embeddings(text_embedding_pairs, embeddings)
|
|
"""
|
|
texts = [t[0] for t in text_embeddings]
|
|
embeddings = [t[1] for t in text_embeddings]
|
|
|
|
return cls.__from(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
ndims=ndims,
|
|
table_name=table_name,
|
|
pre_delete_table=pre_delete_table,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_existing_index(
|
|
cls: Type[Hologres],
|
|
embedding: Embeddings,
|
|
ndims: int = ADA_TOKEN_COUNT,
|
|
table_name: str = _LANGCHAIN_DEFAULT_TABLE_NAME,
|
|
pre_delete_table: bool = False,
|
|
**kwargs: Any,
|
|
) -> Hologres:
|
|
"""
|
|
Get instance of an existing Hologres store.This method will
|
|
return the instance of the store without inserting any new
|
|
embeddings
|
|
"""
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
store = cls(
|
|
connection_string=connection_string,
|
|
ndims=ndims,
|
|
table_name=table_name,
|
|
embedding_function=embedding,
|
|
pre_delete_table=pre_delete_table,
|
|
)
|
|
|
|
return store
|
|
|
|
@classmethod
|
|
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
|
|
connection_string: str = get_from_dict_or_env(
|
|
data=kwargs,
|
|
key="connection_string",
|
|
env_key="HOLOGRES_CONNECTION_STRING",
|
|
)
|
|
|
|
if not connection_string:
|
|
raise ValueError(
|
|
"Hologres connection string is required"
|
|
"Either pass it as a parameter"
|
|
"or set the HOLOGRES_CONNECTION_STRING environment variable."
|
|
"Create the connection string by calling"
|
|
"HologresVector.connection_string_from_db_params"
|
|
)
|
|
|
|
return connection_string
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls: Type[Hologres],
|
|
documents: List[Document],
|
|
embedding: Embeddings,
|
|
ndims: int = ADA_TOKEN_COUNT,
|
|
table_name: str = _LANGCHAIN_DEFAULT_TABLE_NAME,
|
|
ids: Optional[List[str]] = None,
|
|
pre_delete_collection: bool = False,
|
|
**kwargs: Any,
|
|
) -> Hologres:
|
|
"""
|
|
Return VectorStore initialized from documents and embeddings.
|
|
Hologres connection string is required
|
|
"Either pass it as a parameter
|
|
or set the HOLOGRES_CONNECTION_STRING environment variable.
|
|
Create the connection string by calling
|
|
HologresVector.connection_string_from_db_params
|
|
"""
|
|
|
|
texts = [d.page_content for d in documents]
|
|
metadatas = [d.metadata for d in documents]
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
kwargs["connection_string"] = connection_string
|
|
|
|
return cls.from_texts(
|
|
texts=texts,
|
|
pre_delete_collection=pre_delete_collection,
|
|
embedding=embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
ndims=ndims,
|
|
table_name=table_name,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def connection_string_from_db_params(
|
|
cls,
|
|
host: str,
|
|
port: int,
|
|
database: str,
|
|
user: str,
|
|
password: str,
|
|
) -> str:
|
|
"""Return connection string from database parameters."""
|
|
return (
|
|
f"dbname={database} user={user} password={password} host={host} port={port}"
|
|
)
|