mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
476 lines
17 KiB
Python
476 lines
17 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
from hashlib import sha1
|
|
from threading import Thread
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseSettings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
def has_mul_sub_str(s: str, *args: Any) -> bool:
|
|
"""
|
|
Check if a string contains multiple substrings.
|
|
Args:
|
|
s: string to check.
|
|
*args: substrings to check.
|
|
|
|
Returns:
|
|
True if all substrings are in the string, False otherwise.
|
|
"""
|
|
for a in args:
|
|
if a not in s:
|
|
return False
|
|
return True
|
|
|
|
|
|
class ClickhouseSettings(BaseSettings):
|
|
"""`ClickHouse` client configuration.
|
|
|
|
Attribute:
|
|
host (str) : An URL to connect to MyScale backend.
|
|
Defaults to 'localhost'.
|
|
port (int) : URL port to connect with HTTP. Defaults to 8443.
|
|
username (str) : Username to login. Defaults to None.
|
|
password (str) : Password to login. Defaults to None.
|
|
index_type (str): index type string.
|
|
index_param (list): index build parameter.
|
|
index_query_params(dict): index query parameters.
|
|
database (str) : Database name to find the table. Defaults to 'default'.
|
|
table (str) : Table name to operate on.
|
|
Defaults to 'vector_table'.
|
|
metric (str) : Metric to compute distance,
|
|
supported are ('angular', 'euclidean', 'manhattan', 'hamming',
|
|
'dot'). Defaults to 'angular'.
|
|
https://github.com/spotify/annoy/blob/main/src/annoymodule.cc#L149-L169
|
|
|
|
column_map (Dict) : Column type map to project column name onto langchain
|
|
semantics. Must have keys: `text`, `id`, `vector`,
|
|
must be same size to number of columns. For example:
|
|
.. code-block:: python
|
|
|
|
{
|
|
'id': 'text_id',
|
|
'uuid': 'global_unique_id'
|
|
'embedding': 'text_embedding',
|
|
'document': 'text_plain',
|
|
'metadata': 'metadata_dictionary_in_json',
|
|
}
|
|
|
|
Defaults to identity map.
|
|
"""
|
|
|
|
host: str = "localhost"
|
|
port: int = 8123
|
|
|
|
username: Optional[str] = None
|
|
password: Optional[str] = None
|
|
|
|
index_type: str = "annoy"
|
|
# Annoy supports L2Distance and cosineDistance.
|
|
index_param: Optional[Union[List, Dict]] = ["'L2Distance'", 100]
|
|
index_query_params: Dict[str, str] = {}
|
|
|
|
column_map: Dict[str, str] = {
|
|
"id": "id",
|
|
"uuid": "uuid",
|
|
"document": "document",
|
|
"embedding": "embedding",
|
|
"metadata": "metadata",
|
|
}
|
|
|
|
database: str = "default"
|
|
table: str = "langchain"
|
|
metric: str = "angular"
|
|
|
|
def __getitem__(self, item: str) -> Any:
|
|
return getattr(self, item)
|
|
|
|
class Config:
|
|
env_file = ".env"
|
|
env_prefix = "clickhouse_"
|
|
env_file_encoding = "utf-8"
|
|
|
|
|
|
class Clickhouse(VectorStore):
|
|
"""`ClickHouse VectorSearch` vector store.
|
|
|
|
You need a `clickhouse-connect` python package, and a valid account
|
|
to connect to ClickHouse.
|
|
|
|
ClickHouse can not only search with simple vector indexes,
|
|
it also supports complex query with multiple conditions,
|
|
constraints and even sub-queries.
|
|
|
|
For more information, please visit
|
|
[ClickHouse official site](https://clickhouse.com/clickhouse)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding: Embeddings,
|
|
config: Optional[ClickhouseSettings] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""ClickHouse Wrapper to LangChain
|
|
|
|
embedding_function (Embeddings):
|
|
config (ClickHouseSettings): Configuration to ClickHouse Client
|
|
Other keyword arguments will pass into
|
|
[clickhouse-connect](https://docs.clickhouse.com/)
|
|
"""
|
|
try:
|
|
from clickhouse_connect import get_client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import clickhouse connect python package. "
|
|
"Please install it with `pip install clickhouse-connect`."
|
|
)
|
|
try:
|
|
from tqdm import tqdm
|
|
|
|
self.pgbar = tqdm
|
|
except ImportError:
|
|
# Just in case if tqdm is not installed
|
|
self.pgbar = lambda x, **kwargs: x
|
|
super().__init__()
|
|
if config is not None:
|
|
self.config = config
|
|
else:
|
|
self.config = ClickhouseSettings()
|
|
assert self.config
|
|
assert self.config.host and self.config.port
|
|
assert (
|
|
self.config.column_map
|
|
and self.config.database
|
|
and self.config.table
|
|
and self.config.metric
|
|
)
|
|
for k in ["id", "embedding", "document", "metadata", "uuid"]:
|
|
assert k in self.config.column_map
|
|
assert self.config.metric in [
|
|
"angular",
|
|
"euclidean",
|
|
"manhattan",
|
|
"hamming",
|
|
"dot",
|
|
]
|
|
|
|
# initialize the schema
|
|
dim = len(embedding.embed_query("test"))
|
|
|
|
index_params = (
|
|
(
|
|
",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()])
|
|
if self.config.index_param
|
|
else ""
|
|
)
|
|
if isinstance(self.config.index_param, Dict)
|
|
else ",".join([str(p) for p in self.config.index_param])
|
|
if isinstance(self.config.index_param, List)
|
|
else self.config.index_param
|
|
)
|
|
|
|
self.schema = f"""\
|
|
CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}(
|
|
{self.config.column_map['id']} Nullable(String),
|
|
{self.config.column_map['document']} Nullable(String),
|
|
{self.config.column_map['embedding']} Array(Float32),
|
|
{self.config.column_map['metadata']} JSON,
|
|
{self.config.column_map['uuid']} UUID DEFAULT generateUUIDv4(),
|
|
CONSTRAINT cons_vec_len CHECK length({self.config.column_map['embedding']}) = {dim},
|
|
INDEX vec_idx {self.config.column_map['embedding']} TYPE \
|
|
{self.config.index_type}({index_params}) GRANULARITY 1000
|
|
) ENGINE = MergeTree ORDER BY uuid SETTINGS index_granularity = 8192\
|
|
"""
|
|
self.dim = dim
|
|
self.BS = "\\"
|
|
self.must_escape = ("\\", "'")
|
|
self.embedding_function = embedding
|
|
self.dist_order = "ASC" # Only support ConsingDistance and L2Distance
|
|
|
|
# Create a connection to clickhouse
|
|
self.client = get_client(
|
|
host=self.config.host,
|
|
port=self.config.port,
|
|
username=self.config.username,
|
|
password=self.config.password,
|
|
**kwargs,
|
|
)
|
|
# Enable JSON type
|
|
self.client.command("SET allow_experimental_object_type=1")
|
|
# Enable Annoy index
|
|
self.client.command("SET allow_experimental_annoy_index=1")
|
|
self.client.command(self.schema)
|
|
|
|
@property
|
|
def embeddings(self) -> Embeddings:
|
|
return self.embedding_function
|
|
|
|
def escape_str(self, value: str) -> str:
|
|
return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value)
|
|
|
|
def _build_insert_sql(self, transac: Iterable, column_names: Iterable[str]) -> str:
|
|
ks = ",".join(column_names)
|
|
_data = []
|
|
for n in transac:
|
|
n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n])
|
|
_data.append(f"({n})")
|
|
i_str = f"""
|
|
INSERT INTO TABLE
|
|
{self.config.database}.{self.config.table}({ks})
|
|
VALUES
|
|
{','.join(_data)}
|
|
"""
|
|
return i_str
|
|
|
|
def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None:
|
|
_insert_query = self._build_insert_sql(transac, column_names)
|
|
self.client.command(_insert_query)
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
batch_size: int = 32,
|
|
ids: Optional[Iterable[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Insert more texts through the embeddings and add to the VectorStore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the VectorStore.
|
|
ids: Optional list of ids to associate with the texts.
|
|
batch_size: Batch size of insertion
|
|
metadata: Optional column data to be inserted
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the VectorStore.
|
|
|
|
"""
|
|
# Embed and create the documents
|
|
ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts]
|
|
colmap_ = self.config.column_map
|
|
transac = []
|
|
column_names = {
|
|
colmap_["id"]: ids,
|
|
colmap_["document"]: texts,
|
|
colmap_["embedding"]: self.embedding_function.embed_documents(list(texts)),
|
|
}
|
|
metadatas = metadatas or [{} for _ in texts]
|
|
column_names[colmap_["metadata"]] = map(json.dumps, metadatas)
|
|
assert len(set(colmap_) - set(column_names)) >= 0
|
|
keys, values = zip(*column_names.items())
|
|
try:
|
|
t = None
|
|
for v in self.pgbar(
|
|
zip(*values), desc="Inserting data...", total=len(metadatas)
|
|
):
|
|
assert (
|
|
len(v[keys.index(self.config.column_map["embedding"])]) == self.dim
|
|
)
|
|
transac.append(v)
|
|
if len(transac) == batch_size:
|
|
if t:
|
|
t.join()
|
|
t = Thread(target=self._insert, args=[transac, keys])
|
|
t.start()
|
|
transac = []
|
|
if len(transac) > 0:
|
|
if t:
|
|
t.join()
|
|
self._insert(transac, keys)
|
|
return [i for i in ids]
|
|
except Exception as e:
|
|
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
|
return []
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[Dict[Any, Any]]] = None,
|
|
config: Optional[ClickhouseSettings] = None,
|
|
text_ids: Optional[Iterable[str]] = None,
|
|
batch_size: int = 32,
|
|
**kwargs: Any,
|
|
) -> Clickhouse:
|
|
"""Create ClickHouse wrapper with existing texts
|
|
|
|
Args:
|
|
embedding_function (Embeddings): Function to extract text embedding
|
|
texts (Iterable[str]): List or tuple of strings to be added
|
|
config (ClickHouseSettings, Optional): ClickHouse configuration
|
|
text_ids (Optional[Iterable], optional): IDs for the texts.
|
|
Defaults to None.
|
|
batch_size (int, optional): Batchsize when transmitting data to ClickHouse.
|
|
Defaults to 32.
|
|
metadata (List[dict], optional): metadata to texts. Defaults to None.
|
|
Other keyword arguments will pass into
|
|
[clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api)
|
|
Returns:
|
|
ClickHouse Index
|
|
"""
|
|
ctx = cls(embedding, config, **kwargs)
|
|
ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas)
|
|
return ctx
|
|
|
|
def __repr__(self) -> str:
|
|
"""Text representation for ClickHouse Vector Store, prints backends, username
|
|
and schemas. Easy to use with `str(ClickHouse())`
|
|
|
|
Returns:
|
|
repr: string to show connection info and data schema
|
|
"""
|
|
_repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ "
|
|
_repr += f"{self.config.host}:{self.config.port}\033[0m\n\n"
|
|
_repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n"
|
|
_repr += "-" * 51 + "\n"
|
|
for r in self.client.query(
|
|
f"DESC {self.config.database}.{self.config.table}"
|
|
).named_results():
|
|
_repr += (
|
|
f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n"
|
|
)
|
|
_repr += "-" * 51 + "\n"
|
|
return _repr
|
|
|
|
def _build_query_sql(
|
|
self, q_emb: List[float], topk: int, where_str: Optional[str] = None
|
|
) -> str:
|
|
q_emb_str = ",".join(map(str, q_emb))
|
|
if where_str:
|
|
where_str = f"PREWHERE {where_str}"
|
|
else:
|
|
where_str = ""
|
|
|
|
settings_strs = []
|
|
if self.config.index_query_params:
|
|
for k in self.config.index_query_params:
|
|
settings_strs.append(f"SETTING {k}={self.config.index_query_params[k]}")
|
|
q_str = f"""
|
|
SELECT {self.config.column_map['document']},
|
|
{self.config.column_map['metadata']}, dist
|
|
FROM {self.config.database}.{self.config.table}
|
|
{where_str}
|
|
ORDER BY L2Distance({self.config.column_map['embedding']}, [{q_emb_str}])
|
|
AS dist {self.dist_order}
|
|
LIMIT {topk} {' '.join(settings_strs)}
|
|
"""
|
|
return q_str
|
|
|
|
def similarity_search(
|
|
self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Perform a similarity search with ClickHouse
|
|
|
|
Args:
|
|
query (str): query string
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
where_str (Optional[str], optional): where condition string.
|
|
Defaults to None.
|
|
|
|
NOTE: Please do not let end-user to fill this and always be aware
|
|
of SQL injection. When dealing with metadatas, remember to
|
|
use `{self.metadata_column}.attribute` instead of `attribute`
|
|
alone. The default name for it is `metadata`.
|
|
|
|
Returns:
|
|
List[Document]: List of Documents
|
|
"""
|
|
return self.similarity_search_by_vector(
|
|
self.embedding_function.embed_query(query), k, where_str, **kwargs
|
|
)
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
where_str: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Perform a similarity search with ClickHouse by vectors
|
|
|
|
Args:
|
|
query (str): query string
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
where_str (Optional[str], optional): where condition string.
|
|
Defaults to None.
|
|
|
|
NOTE: Please do not let end-user to fill this and always be aware
|
|
of SQL injection. When dealing with metadatas, remember to
|
|
use `{self.metadata_column}.attribute` instead of `attribute`
|
|
alone. The default name for it is `metadata`.
|
|
|
|
Returns:
|
|
List[Document]: List of documents
|
|
"""
|
|
q_str = self._build_query_sql(embedding, k, where_str)
|
|
try:
|
|
return [
|
|
Document(
|
|
page_content=r[self.config.column_map["document"]],
|
|
metadata=r[self.config.column_map["metadata"]],
|
|
)
|
|
for r in self.client.query(q_str).named_results()
|
|
]
|
|
except Exception as e:
|
|
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
|
return []
|
|
|
|
def similarity_search_with_relevance_scores(
|
|
self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Perform a similarity search with ClickHouse
|
|
|
|
Args:
|
|
query (str): query string
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
where_str (Optional[str], optional): where condition string.
|
|
Defaults to None.
|
|
|
|
NOTE: Please do not let end-user to fill this and always be aware
|
|
of SQL injection. When dealing with metadatas, remember to
|
|
use `{self.metadata_column}.attribute` instead of `attribute`
|
|
alone. The default name for it is `metadata`.
|
|
|
|
Returns:
|
|
List[Document]: List of (Document, similarity)
|
|
"""
|
|
q_str = self._build_query_sql(
|
|
self.embedding_function.embed_query(query), k, where_str
|
|
)
|
|
try:
|
|
return [
|
|
(
|
|
Document(
|
|
page_content=r[self.config.column_map["document"]],
|
|
metadata=r[self.config.column_map["metadata"]],
|
|
),
|
|
r["dist"],
|
|
)
|
|
for r in self.client.query(q_str).named_results()
|
|
]
|
|
except Exception as e:
|
|
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
|
return []
|
|
|
|
def drop(self) -> None:
|
|
"""
|
|
Helper function: Drop data
|
|
"""
|
|
self.client.command(
|
|
f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}"
|
|
)
|
|
|
|
@property
|
|
def metadata_column(self) -> str:
|
|
return self.config.column_map["metadata"]
|