mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
138 lines
4.8 KiB
Python
138 lines
4.8 KiB
Python
from datetime import datetime, timedelta
|
|
from typing import List, Optional
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
|
|
|
|
class DatadogLogsLoader(BaseLoader):
|
|
"""Load `Datadog` logs.
|
|
|
|
Logs are written into the `page_content` and into the `metadata`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
query: str,
|
|
api_key: str,
|
|
app_key: str,
|
|
from_time: Optional[int] = None,
|
|
to_time: Optional[int] = None,
|
|
limit: int = 100,
|
|
) -> None:
|
|
"""Initialize Datadog document loader.
|
|
|
|
Requirements:
|
|
- Must have datadog_api_client installed. Install with `pip install datadog_api_client`.
|
|
|
|
Args:
|
|
query: The query to run in Datadog.
|
|
api_key: The Datadog API key.
|
|
app_key: The Datadog APP key.
|
|
from_time: Optional. The start of the time range to query.
|
|
Supports date math and regular timestamps (milliseconds) like '1688732708951'
|
|
Defaults to 20 minutes ago.
|
|
to_time: Optional. The end of the time range to query.
|
|
Supports date math and regular timestamps (milliseconds) like '1688732708951'
|
|
Defaults to now.
|
|
limit: The maximum number of logs to return.
|
|
Defaults to 100.
|
|
""" # noqa: E501
|
|
try:
|
|
from datadog_api_client import Configuration
|
|
except ImportError as ex:
|
|
raise ImportError(
|
|
"Could not import datadog_api_client python package. "
|
|
"Please install it with `pip install datadog_api_client`."
|
|
) from ex
|
|
|
|
self.query = query
|
|
configuration = Configuration()
|
|
configuration.api_key["apiKeyAuth"] = api_key
|
|
configuration.api_key["appKeyAuth"] = app_key
|
|
self.configuration = configuration
|
|
self.from_time = from_time
|
|
self.to_time = to_time
|
|
self.limit = limit
|
|
|
|
def parse_log(self, log: dict) -> Document:
|
|
"""
|
|
Create Document objects from Datadog log items.
|
|
"""
|
|
attributes = log.get("attributes", {})
|
|
metadata = {
|
|
"id": log.get("id", ""),
|
|
"status": attributes.get("status"),
|
|
"service": attributes.get("service", ""),
|
|
"tags": attributes.get("tags", []),
|
|
"timestamp": attributes.get("timestamp", ""),
|
|
}
|
|
|
|
message = attributes.get("message", "")
|
|
inside_attributes = attributes.get("attributes", {})
|
|
content_dict = {**inside_attributes, "message": message}
|
|
content = ", ".join(f"{k}: {v}" for k, v in content_dict.items())
|
|
return Document(page_content=content, metadata=metadata)
|
|
|
|
def load(self) -> List[Document]:
|
|
"""
|
|
Get logs from Datadog.
|
|
|
|
Returns:
|
|
A list of Document objects.
|
|
- page_content
|
|
- metadata
|
|
- id
|
|
- service
|
|
- status
|
|
- tags
|
|
- timestamp
|
|
"""
|
|
try:
|
|
from datadog_api_client import ApiClient
|
|
from datadog_api_client.v2.api.logs_api import LogsApi
|
|
from datadog_api_client.v2.model.logs_list_request import LogsListRequest
|
|
from datadog_api_client.v2.model.logs_list_request_page import (
|
|
LogsListRequestPage,
|
|
)
|
|
from datadog_api_client.v2.model.logs_query_filter import LogsQueryFilter
|
|
from datadog_api_client.v2.model.logs_sort import LogsSort
|
|
except ImportError as ex:
|
|
raise ImportError(
|
|
"Could not import datadog_api_client python package. "
|
|
"Please install it with `pip install datadog_api_client`."
|
|
) from ex
|
|
|
|
now = datetime.now()
|
|
twenty_minutes_before = now - timedelta(minutes=20)
|
|
now_timestamp = int(now.timestamp() * 1000)
|
|
twenty_minutes_before_timestamp = int(twenty_minutes_before.timestamp() * 1000)
|
|
_from = (
|
|
self.from_time
|
|
if self.from_time is not None
|
|
else twenty_minutes_before_timestamp
|
|
)
|
|
|
|
body = LogsListRequest(
|
|
filter=LogsQueryFilter(
|
|
query=self.query,
|
|
_from=_from,
|
|
to=f"{self.to_time if self.to_time is not None else now_timestamp}",
|
|
),
|
|
sort=LogsSort.TIMESTAMP_ASCENDING,
|
|
page=LogsListRequestPage(
|
|
limit=self.limit,
|
|
),
|
|
)
|
|
|
|
with ApiClient(configuration=self.configuration) as api_client:
|
|
api_instance = LogsApi(api_client)
|
|
response = api_instance.list_logs(body=body).to_dict()
|
|
|
|
docs: List[Document] = []
|
|
for row in response["data"]:
|
|
docs.append(self.parse_log(row))
|
|
|
|
return docs
|