langchain/libs/partners/nomic/langchain_nomic/embeddings.py
Zach Nussbaum 14f3014cce
embeddings: nomic embed vision (#22482)
Thank you for contributing to LangChain!

**Description:** Adds Langchain support for Nomic Embed Vision
**Twitter handle:** nomic_ai,zach_nussbaum


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-05 09:47:17 -07:00

135 lines
3.8 KiB
Python

import os
from typing import List, Literal, Optional, overload
import nomic # type: ignore[import]
from langchain_core.embeddings import Embeddings
from nomic import embed
class NomicEmbeddings(Embeddings):
"""NomicEmbeddings embedding model.
Example:
.. code-block:: python
from langchain_nomic import NomicEmbeddings
model = NomicEmbeddings()
"""
@overload
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = ...,
dimensionality: Optional[int] = ...,
inference_mode: Literal["remote"] = ...,
):
...
@overload
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = ...,
dimensionality: Optional[int] = ...,
inference_mode: Literal["local", "dynamic"],
device: Optional[str] = ...,
):
...
@overload
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = ...,
dimensionality: Optional[int] = ...,
inference_mode: str,
device: Optional[str] = ...,
):
...
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = None,
dimensionality: Optional[int] = None,
inference_mode: str = "remote",
device: Optional[str] = None,
vision_model: Optional[str] = None,
):
"""Initialize NomicEmbeddings model.
Args:
model: model name
nomic_api_key: optionally, set the Nomic API key. Uses the NOMIC_API_KEY
environment variable by default.
dimensionality: The embedding dimension, for use with Matryoshka-capable
models. Defaults to full-size.
inference_mode: How to generate embeddings. One of `remote`, `local`
(Embed4All), or `dynamic` (automatic). Defaults to `remote`.
device: The device to use for local embeddings. Choices include
`cpu`, `gpu`, `nvidia`, `amd`, or a specific device name. See
the docstring for `GPT4All.__init__` for more info. Typically
defaults to CPU. Do not use on macOS.
"""
_api_key = nomic_api_key or os.environ.get("NOMIC_API_KEY")
if _api_key:
nomic.login(_api_key)
self.model = model
self.dimensionality = dimensionality
self.inference_mode = inference_mode
self.device = device
self.vision_model = vision_model
def embed(self, texts: List[str], *, task_type: str) -> List[List[float]]:
"""Embed texts.
Args:
texts: list of texts to embed
task_type: the task type to use when embedding. One of `search_query`,
`search_document`, `classification`, `clustering`
"""
output = embed.text(
texts=texts,
model=self.model,
task_type=task_type,
dimensionality=self.dimensionality,
inference_mode=self.inference_mode,
device=self.device,
)
return output["embeddings"]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs.
Args:
texts: list of texts to embed as documents
"""
return self.embed(
texts=texts,
task_type="search_document",
)
def embed_query(self, text: str) -> List[float]:
"""Embed query text.
Args:
text: query text
"""
return self.embed(
texts=[text],
task_type="search_query",
)[0]
def embed_image(self, uris: List[str]) -> List[List[float]]:
return embed.image(
images=uris,
model=self.vision_model,
)["embeddings"]