mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
24c1654208
Fixes #7652 Description: This is a fix for clearing the cache for SQL Alchemy based LLM caches. The langchain.llm_cache.clear() did not take effect for SQLite cache. Reason: it didn't commit the deletion database change. See SQLAlchemy documentation for proper usage: https://docs.sqlalchemy.org/en/20/orm/session_basics.html#opening-and-closing-a-session https://docs.sqlalchemy.org/en/20/orm/session_basics.html#deleting @hwchase17 @baskaryan --------- Co-authored-by: Tamas Molnar <tamas.molnar@nagarro.com>
166 lines
5.3 KiB
Python
166 lines
5.3 KiB
Python
"""Test caching for LLMs and ChatModels."""
|
|
from typing import Dict, Generator, List, Union
|
|
|
|
import pytest
|
|
from _pytest.fixtures import FixtureRequest
|
|
from sqlalchemy import create_engine
|
|
from sqlalchemy.orm import Session
|
|
|
|
import langchain
|
|
from langchain.cache import (
|
|
InMemoryCache,
|
|
SQLAlchemyCache,
|
|
)
|
|
from langchain.chat_models import FakeListChatModel
|
|
from langchain.chat_models.base import BaseChatModel, dumps
|
|
from langchain.llms import FakeListLLM
|
|
from langchain.llms.base import BaseLLM
|
|
from langchain.schema import (
|
|
ChatGeneration,
|
|
Generation,
|
|
)
|
|
from langchain.schema.messages import AIMessage, BaseMessage, HumanMessage
|
|
|
|
|
|
def get_sqlite_cache() -> SQLAlchemyCache:
|
|
return SQLAlchemyCache(engine=create_engine("sqlite://"))
|
|
|
|
|
|
CACHE_OPTIONS = [
|
|
InMemoryCache,
|
|
get_sqlite_cache,
|
|
]
|
|
|
|
|
|
@pytest.fixture(autouse=True, params=CACHE_OPTIONS)
|
|
def set_cache_and_teardown(request: FixtureRequest) -> Generator[None, None, None]:
|
|
# Will be run before each test
|
|
cache_instance = request.param
|
|
langchain.llm_cache = cache_instance()
|
|
if langchain.llm_cache:
|
|
langchain.llm_cache.clear()
|
|
else:
|
|
raise ValueError("Cache not set. This should never happen.")
|
|
|
|
yield
|
|
|
|
# Will be run after each test
|
|
if langchain.llm_cache:
|
|
langchain.llm_cache.clear()
|
|
langchain.llm_cache = None
|
|
else:
|
|
raise ValueError("Cache not set. This should never happen.")
|
|
|
|
|
|
def test_llm_caching() -> None:
|
|
prompt = "How are you?"
|
|
response = "Test response"
|
|
cached_response = "Cached test response"
|
|
llm = FakeListLLM(responses=[response])
|
|
if langchain.llm_cache:
|
|
langchain.llm_cache.update(
|
|
prompt=prompt,
|
|
llm_string=create_llm_string(llm),
|
|
return_val=[Generation(text=cached_response)],
|
|
)
|
|
assert llm(prompt) == cached_response
|
|
else:
|
|
raise ValueError(
|
|
"The cache not set. This should never happen, as the pytest fixture "
|
|
"`set_cache_and_teardown` always sets the cache."
|
|
)
|
|
|
|
|
|
def test_old_sqlite_llm_caching() -> None:
|
|
if isinstance(langchain.llm_cache, SQLAlchemyCache):
|
|
prompt = "How are you?"
|
|
response = "Test response"
|
|
cached_response = "Cached test response"
|
|
llm = FakeListLLM(responses=[response])
|
|
items = [
|
|
langchain.llm_cache.cache_schema(
|
|
prompt=prompt,
|
|
llm=create_llm_string(llm),
|
|
response=cached_response,
|
|
idx=0,
|
|
)
|
|
]
|
|
with Session(langchain.llm_cache.engine) as session, session.begin():
|
|
for item in items:
|
|
session.merge(item)
|
|
assert llm(prompt) == cached_response
|
|
|
|
|
|
def test_chat_model_caching() -> None:
|
|
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
|
|
response = "Test response"
|
|
cached_response = "Cached test response"
|
|
cached_message = AIMessage(content=cached_response)
|
|
llm = FakeListChatModel(responses=[response])
|
|
if langchain.llm_cache:
|
|
langchain.llm_cache.update(
|
|
prompt=dumps(prompt),
|
|
llm_string=llm._get_llm_string(),
|
|
return_val=[ChatGeneration(message=cached_message)],
|
|
)
|
|
result = llm(prompt)
|
|
assert isinstance(result, AIMessage)
|
|
assert result.content == cached_response
|
|
else:
|
|
raise ValueError(
|
|
"The cache not set. This should never happen, as the pytest fixture "
|
|
"`set_cache_and_teardown` always sets the cache."
|
|
)
|
|
|
|
|
|
def test_chat_model_caching_params() -> None:
|
|
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
|
|
response = "Test response"
|
|
cached_response = "Cached test response"
|
|
cached_message = AIMessage(content=cached_response)
|
|
llm = FakeListChatModel(responses=[response])
|
|
if langchain.llm_cache:
|
|
langchain.llm_cache.update(
|
|
prompt=dumps(prompt),
|
|
llm_string=llm._get_llm_string(functions=[]),
|
|
return_val=[ChatGeneration(message=cached_message)],
|
|
)
|
|
result = llm(prompt, functions=[])
|
|
assert isinstance(result, AIMessage)
|
|
assert result.content == cached_response
|
|
result_no_params = llm(prompt)
|
|
assert isinstance(result_no_params, AIMessage)
|
|
assert result_no_params.content == response
|
|
|
|
else:
|
|
raise ValueError(
|
|
"The cache not set. This should never happen, as the pytest fixture "
|
|
"`set_cache_and_teardown` always sets the cache."
|
|
)
|
|
|
|
|
|
def test_llm_cache_clear() -> None:
|
|
prompt = "How are you?"
|
|
response = "Test response"
|
|
cached_response = "Cached test response"
|
|
llm = FakeListLLM(responses=[response])
|
|
if langchain.llm_cache:
|
|
langchain.llm_cache.update(
|
|
prompt=prompt,
|
|
llm_string=create_llm_string(llm),
|
|
return_val=[Generation(text=cached_response)],
|
|
)
|
|
langchain.llm_cache.clear()
|
|
assert llm(prompt) == response
|
|
else:
|
|
raise ValueError(
|
|
"The cache not set. This should never happen, as the pytest fixture "
|
|
"`set_cache_and_teardown` always sets the cache."
|
|
)
|
|
|
|
|
|
def create_llm_string(llm: Union[BaseLLM, BaseChatModel]) -> str:
|
|
_dict: Dict = llm.dict()
|
|
_dict["stop"] = None
|
|
return str(sorted([(k, v) for k, v in _dict.items()]))
|