mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
c010ec8b71
- `.get_relevant_documents(query)` -> `.invoke(query)` - `.get_relevant_documents(query=query)` -> `.invoke(query)` - `.get_relevant_documents(query, callbacks=callbacks)` -> `.invoke(query, config={"callbacks": callbacks})` - `.get_relevant_documents(query, **kwargs)` -> `.invoke(query, **kwargs)` --------- Co-authored-by: Erick Friis <erick@langchain.dev>
43 lines
1.6 KiB
Python
43 lines
1.6 KiB
Python
import pytest
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.embeddings import FakeEmbeddings
|
|
from langchain_community.retrievers.svm import SVMRetriever
|
|
|
|
|
|
class TestSVMRetriever:
|
|
@pytest.mark.requires("sklearn")
|
|
def test_from_texts(self) -> None:
|
|
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
|
|
svm_retriever = SVMRetriever.from_texts(
|
|
texts=input_texts, embeddings=FakeEmbeddings(size=100)
|
|
)
|
|
assert len(svm_retriever.texts) == 3
|
|
|
|
@pytest.mark.requires("sklearn")
|
|
def test_from_documents(self) -> None:
|
|
input_docs = [
|
|
Document(page_content="I have a pen.", metadata={"foo": "bar"}),
|
|
Document(page_content="Do you have a pen?"),
|
|
Document(page_content="I have a bag."),
|
|
]
|
|
svm_retriever = SVMRetriever.from_documents(
|
|
documents=input_docs, embeddings=FakeEmbeddings(size=100)
|
|
)
|
|
assert len(svm_retriever.texts) == 3
|
|
|
|
@pytest.mark.requires("sklearn")
|
|
def test_metadata_persists(self) -> None:
|
|
input_docs = [
|
|
Document(page_content="I have a pen.", metadata={"foo": "bar"}),
|
|
Document(page_content="How about you?", metadata={"foo": "baz"}),
|
|
Document(page_content="I have a bag.", metadata={"foo": "qux"}),
|
|
]
|
|
svm_retriever = SVMRetriever.from_documents(
|
|
documents=input_docs, embeddings=FakeEmbeddings(size=100)
|
|
)
|
|
query = "Have anything?"
|
|
output_docs = svm_retriever.invoke(query)
|
|
for doc in output_docs:
|
|
assert "foo" in doc.metadata
|