mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
148 lines
4.3 KiB
Python
148 lines
4.3 KiB
Python
from typing import Any, Dict, List, Optional, Union, cast
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.utilities.arcee import ArceeWrapper, DALMFilter
|
|
|
|
|
|
class Arcee(LLM):
|
|
"""Arcee's Domain Adapted Language Models (DALMs).
|
|
|
|
To use, set the ``ARCEE_API_KEY`` environment variable with your Arcee API key,
|
|
or pass ``arcee_api_key`` as a named parameter.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import Arcee
|
|
|
|
arcee = Arcee(
|
|
model="DALM-PubMed",
|
|
arcee_api_key="ARCEE-API-KEY"
|
|
)
|
|
|
|
response = arcee("AI-driven music therapy")
|
|
"""
|
|
|
|
_client: Optional[ArceeWrapper] = None #: :meta private:
|
|
"""Arcee _client."""
|
|
|
|
arcee_api_key: Union[SecretStr, str, None] = None
|
|
"""Arcee API Key"""
|
|
|
|
model: str
|
|
"""Arcee DALM name"""
|
|
|
|
arcee_api_url: str = "https://api.arcee.ai"
|
|
"""Arcee API URL"""
|
|
|
|
arcee_api_version: str = "v2"
|
|
"""Arcee API Version"""
|
|
|
|
arcee_app_url: str = "https://app.arcee.ai"
|
|
"""Arcee App URL"""
|
|
|
|
model_id: str = ""
|
|
"""Arcee Model ID"""
|
|
|
|
model_kwargs: Optional[Dict[str, Any]] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
underscore_attrs_are_private = True
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "arcee"
|
|
|
|
def __init__(self, **data: Any) -> None:
|
|
"""Initializes private fields."""
|
|
|
|
super().__init__(**data)
|
|
api_key = cast(SecretStr, self.arcee_api_key)
|
|
self._client = ArceeWrapper(
|
|
arcee_api_key=api_key,
|
|
arcee_api_url=self.arcee_api_url,
|
|
arcee_api_version=self.arcee_api_version,
|
|
model_kwargs=self.model_kwargs,
|
|
model_name=self.model,
|
|
)
|
|
|
|
@root_validator(pre=False)
|
|
def validate_environments(cls, values: Dict) -> Dict:
|
|
"""Validate Arcee environment variables."""
|
|
|
|
# validate env vars
|
|
values["arcee_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"arcee_api_key",
|
|
"ARCEE_API_KEY",
|
|
)
|
|
)
|
|
|
|
values["arcee_api_url"] = get_from_dict_or_env(
|
|
values,
|
|
"arcee_api_url",
|
|
"ARCEE_API_URL",
|
|
)
|
|
|
|
values["arcee_app_url"] = get_from_dict_or_env(
|
|
values,
|
|
"arcee_app_url",
|
|
"ARCEE_APP_URL",
|
|
)
|
|
|
|
values["arcee_api_version"] = get_from_dict_or_env(
|
|
values,
|
|
"arcee_api_version",
|
|
"ARCEE_API_VERSION",
|
|
)
|
|
|
|
# validate model kwargs
|
|
if values.get("model_kwargs"):
|
|
kw = values["model_kwargs"]
|
|
|
|
# validate size
|
|
if kw.get("size") is not None:
|
|
if not kw.get("size") >= 0:
|
|
raise ValueError("`size` must be positive")
|
|
|
|
# validate filters
|
|
if kw.get("filters") is not None:
|
|
if not isinstance(kw.get("filters"), List):
|
|
raise ValueError("`filters` must be a list")
|
|
for f in kw.get("filters"):
|
|
DALMFilter(**f)
|
|
return values
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Generate text from Arcee DALM.
|
|
|
|
Args:
|
|
prompt: Prompt to generate text from.
|
|
size: The max number of context results to retrieve.
|
|
Defaults to 3. (Can be less if filters are provided).
|
|
filters: Filters to apply to the context dataset.
|
|
"""
|
|
|
|
try:
|
|
if not self._client:
|
|
raise ValueError("Client is not initialized.")
|
|
return self._client.generate(prompt=prompt, **kwargs)
|
|
except Exception as e:
|
|
raise Exception(f"Failed to generate text: {e}") from e
|