mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
9ce177580a
In this PR I added a post-processing function to normalize the embeddings. This happens only if the new `normalize` flag is `True`. --------- Co-authored-by: taamedag <Davide.Menini@swisscom.com>
219 lines
7.1 KiB
Python
219 lines
7.1 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import numpy as np
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
from langchain_core.runnables.config import run_in_executor
|
|
|
|
|
|
class BedrockEmbeddings(BaseModel, Embeddings):
|
|
"""Bedrock embedding models.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Bedrock service.
|
|
"""
|
|
|
|
"""
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.bedrock_embeddings import BedrockEmbeddings
|
|
|
|
region_name ="us-east-1"
|
|
credentials_profile_name = "default"
|
|
model_id = "amazon.titan-embed-text-v1"
|
|
|
|
be = BedrockEmbeddings(
|
|
credentials_profile_name=credentials_profile_name,
|
|
region_name=region_name,
|
|
model_id=model_id
|
|
)
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
"""Bedrock client."""
|
|
region_name: Optional[str] = None
|
|
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable
|
|
or region specified in ~/.aws/config in case it is not provided here.
|
|
"""
|
|
|
|
credentials_profile_name: Optional[str] = None
|
|
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
|
|
has either access keys or role information specified.
|
|
If not specified, the default credential profile or, if on an EC2 instance,
|
|
credentials from IMDS will be used.
|
|
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
"""
|
|
|
|
model_id: str = "amazon.titan-embed-text-v1"
|
|
"""Id of the model to call, e.g., amazon.titan-embed-text-v1, this is
|
|
equivalent to the modelId property in the list-foundation-models api"""
|
|
|
|
model_kwargs: Optional[Dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
endpoint_url: Optional[str] = None
|
|
"""Needed if you don't want to default to us-east-1 endpoint"""
|
|
|
|
normalize: bool = False
|
|
"""Whether the embeddings should be normalized to unit vectors"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that AWS credentials to and python package exists in environment."""
|
|
|
|
if values["client"] is not None:
|
|
return values
|
|
|
|
try:
|
|
import boto3
|
|
|
|
if values["credentials_profile_name"] is not None:
|
|
session = boto3.Session(profile_name=values["credentials_profile_name"])
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
client_params = {}
|
|
if values["region_name"]:
|
|
client_params["region_name"] = values["region_name"]
|
|
|
|
if values["endpoint_url"]:
|
|
client_params["endpoint_url"] = values["endpoint_url"]
|
|
|
|
values["client"] = session.client("bedrock-runtime", **client_params)
|
|
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
"profile name are valid."
|
|
) from e
|
|
|
|
return values
|
|
|
|
def _embedding_func(self, text: str) -> List[float]:
|
|
"""Call out to Bedrock embedding endpoint."""
|
|
# replace newlines, which can negatively affect performance.
|
|
text = text.replace(os.linesep, " ")
|
|
|
|
# format input body for provider
|
|
provider = self.model_id.split(".")[0]
|
|
_model_kwargs = self.model_kwargs or {}
|
|
input_body = {**_model_kwargs}
|
|
if provider == "cohere":
|
|
if "input_type" not in input_body.keys():
|
|
input_body["input_type"] = "search_document"
|
|
input_body["texts"] = [text]
|
|
else:
|
|
# includes common provider == "amazon"
|
|
input_body["inputText"] = text
|
|
body = json.dumps(input_body)
|
|
|
|
try:
|
|
# invoke bedrock API
|
|
response = self.client.invoke_model(
|
|
body=body,
|
|
modelId=self.model_id,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
|
|
# format output based on provider
|
|
response_body = json.loads(response.get("body").read())
|
|
if provider == "cohere":
|
|
return response_body.get("embeddings")[0]
|
|
else:
|
|
# includes common provider == "amazon"
|
|
return response_body.get("embedding")
|
|
except Exception as e:
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
|
|
def _normalize_vector(self, embeddings: List[float]) -> List[float]:
|
|
"""Normalize the embedding to a unit vector."""
|
|
emb = np.array(embeddings)
|
|
norm_emb = emb / np.linalg.norm(emb)
|
|
return norm_emb.tolist()
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Compute doc embeddings using a Bedrock model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
results = []
|
|
for text in texts:
|
|
response = self._embedding_func(text)
|
|
|
|
if self.normalize:
|
|
response = self._normalize_vector(response)
|
|
|
|
results.append(response)
|
|
|
|
return results
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Compute query embeddings using a Bedrock model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
embedding = self._embedding_func(text)
|
|
|
|
if self.normalize:
|
|
return self._normalize_vector(embedding)
|
|
|
|
return embedding
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
"""Asynchronous compute query embeddings using a Bedrock model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
|
|
return await run_in_executor(None, self.embed_query, text)
|
|
|
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Asynchronous compute doc embeddings using a Bedrock model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
|
|
result = await asyncio.gather(*[self.aembed_query(text) for text in texts])
|
|
|
|
return list(result)
|