mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
256 lines
9.4 KiB
Python
256 lines
9.4 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
|
|
"""Aleph Alpha's asymmetric semantic embedding.
|
|
|
|
AA provides you with an endpoint to embed a document and a query.
|
|
The models were optimized to make the embeddings of documents and
|
|
the query for a document as similar as possible.
|
|
To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding
|
|
|
|
embeddings = AlephAlphaAsymmetricSemanticEmbedding(
|
|
normalize=True, compress_to_size=128
|
|
)
|
|
|
|
document = "This is a content of the document"
|
|
query = "What is the content of the document?"
|
|
|
|
doc_result = embeddings.embed_documents([document])
|
|
query_result = embeddings.embed_query(query)
|
|
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
|
|
# Embedding params
|
|
model: str = "luminous-base"
|
|
"""Model name to use."""
|
|
compress_to_size: Optional[int] = None
|
|
"""Should the returned embeddings come back as an original 5120-dim vector,
|
|
or should it be compressed to 128-dim."""
|
|
normalize: Optional[bool] = None
|
|
"""Should returned embeddings be normalized"""
|
|
contextual_control_threshold: Optional[int] = None
|
|
"""Attention control parameters only apply to those tokens that have
|
|
explicitly been set in the request."""
|
|
control_log_additive: bool = True
|
|
"""Apply controls on prompt items by adding the log(control_factor)
|
|
to attention scores."""
|
|
|
|
# Client params
|
|
aleph_alpha_api_key: Optional[str] = None
|
|
"""API key for Aleph Alpha API."""
|
|
host: str = "https://api.aleph-alpha.com"
|
|
"""The hostname of the API host.
|
|
The default one is "https://api.aleph-alpha.com")"""
|
|
hosting: Optional[str] = None
|
|
"""Determines in which datacenters the request may be processed.
|
|
You can either set the parameter to "aleph-alpha" or omit it (defaulting to None).
|
|
Not setting this value, or setting it to None, gives us maximal flexibility
|
|
in processing your request in our
|
|
own datacenters and on servers hosted with other providers.
|
|
Choose this option for maximal availability.
|
|
Setting it to "aleph-alpha" allows us to only process the request
|
|
in our own datacenters.
|
|
Choose this option for maximal data privacy."""
|
|
request_timeout_seconds: int = 305
|
|
"""Client timeout that will be set for HTTP requests in the
|
|
`requests` library's API calls.
|
|
Server will close all requests after 300 seconds with an internal server error."""
|
|
total_retries: int = 8
|
|
"""The number of retries made in case requests fail with certain retryable
|
|
status codes. If the last
|
|
retry fails a corresponding exception is raised. Note, that between retries
|
|
an exponential backoff
|
|
is applied, starting with 0.5 s after the first retry and doubling for each
|
|
retry made. So with the
|
|
default setting of 8 retries a total wait time of 63.5 s is added between
|
|
the retries."""
|
|
nice: bool = False
|
|
"""Setting this to True, will signal to the API that you intend to be
|
|
nice to other users
|
|
by de-prioritizing your request below concurrent ones."""
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
aleph_alpha_api_key = get_from_dict_or_env(
|
|
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
|
|
)
|
|
try:
|
|
from aleph_alpha_client import Client
|
|
|
|
values["client"] = Client(
|
|
token=aleph_alpha_api_key,
|
|
host=values["host"],
|
|
hosting=values["hosting"],
|
|
request_timeout_seconds=values["request_timeout_seconds"],
|
|
total_retries=values["total_retries"],
|
|
nice=values["nice"],
|
|
)
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import aleph_alpha_client python package. "
|
|
"Please install it with `pip install aleph_alpha_client`."
|
|
)
|
|
|
|
return values
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Call out to Aleph Alpha's asymmetric Document endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
try:
|
|
from aleph_alpha_client import (
|
|
Prompt,
|
|
SemanticEmbeddingRequest,
|
|
SemanticRepresentation,
|
|
)
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import aleph_alpha_client python package. "
|
|
"Please install it with `pip install aleph_alpha_client`."
|
|
)
|
|
document_embeddings = []
|
|
|
|
for text in texts:
|
|
document_params = {
|
|
"prompt": Prompt.from_text(text),
|
|
"representation": SemanticRepresentation.Document,
|
|
"compress_to_size": self.compress_to_size,
|
|
"normalize": self.normalize,
|
|
"contextual_control_threshold": self.contextual_control_threshold,
|
|
"control_log_additive": self.control_log_additive,
|
|
}
|
|
|
|
document_request = SemanticEmbeddingRequest(**document_params)
|
|
document_response = self.client.semantic_embed(
|
|
request=document_request, model=self.model
|
|
)
|
|
|
|
document_embeddings.append(document_response.embedding)
|
|
|
|
return document_embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
try:
|
|
from aleph_alpha_client import (
|
|
Prompt,
|
|
SemanticEmbeddingRequest,
|
|
SemanticRepresentation,
|
|
)
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import aleph_alpha_client python package. "
|
|
"Please install it with `pip install aleph_alpha_client`."
|
|
)
|
|
symmetric_params = {
|
|
"prompt": Prompt.from_text(text),
|
|
"representation": SemanticRepresentation.Query,
|
|
"compress_to_size": self.compress_to_size,
|
|
"normalize": self.normalize,
|
|
"contextual_control_threshold": self.contextual_control_threshold,
|
|
"control_log_additive": self.control_log_additive,
|
|
}
|
|
|
|
symmetric_request = SemanticEmbeddingRequest(**symmetric_params)
|
|
symmetric_response = self.client.semantic_embed(
|
|
request=symmetric_request, model=self.model
|
|
)
|
|
|
|
return symmetric_response.embedding
|
|
|
|
|
|
class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding):
|
|
"""The symmetric version of the Aleph Alpha's semantic embeddings.
|
|
|
|
The main difference is that here, both the documents and
|
|
queries are embedded with a SemanticRepresentation.Symmetric
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
|
|
|
|
embeddings = AlephAlphaAsymmetricSemanticEmbedding(
|
|
normalize=True, compress_to_size=128
|
|
)
|
|
text = "This is a test text"
|
|
|
|
doc_result = embeddings.embed_documents([text])
|
|
query_result = embeddings.embed_query(text)
|
|
"""
|
|
|
|
def _embed(self, text: str) -> List[float]:
|
|
try:
|
|
from aleph_alpha_client import (
|
|
Prompt,
|
|
SemanticEmbeddingRequest,
|
|
SemanticRepresentation,
|
|
)
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import aleph_alpha_client python package. "
|
|
"Please install it with `pip install aleph_alpha_client`."
|
|
)
|
|
query_params = {
|
|
"prompt": Prompt.from_text(text),
|
|
"representation": SemanticRepresentation.Symmetric,
|
|
"compress_to_size": self.compress_to_size,
|
|
"normalize": self.normalize,
|
|
"contextual_control_threshold": self.contextual_control_threshold,
|
|
"control_log_additive": self.control_log_additive,
|
|
}
|
|
|
|
query_request = SemanticEmbeddingRequest(**query_params)
|
|
query_response = self.client.semantic_embed(
|
|
request=query_request, model=self.model
|
|
)
|
|
|
|
return query_response.embedding
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Call out to Aleph Alpha's Document endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
document_embeddings = []
|
|
|
|
for text in texts:
|
|
document_embeddings.append(self._embed(text))
|
|
return document_embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self._embed(text)
|