mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
e26e1f8b37
**Description:** Added aembed_documents() and aembed_query() async functions in HuggingFaceHubEmbeddings class in langchain_community\embeddings\huggingface_hub.py file. It will support to make async calls to HuggingFaceHub's embedding endpoint and generate embeddings asynchronously. Test Cases: Added test_huggingfacehub_embedding_async_documents() and test_huggingfacehub_embedding_async_query() functions in test_huggingface_hub.py file to test the two async functions created in HuggingFaceHubEmbeddings class. Documentation: Updated huggingfacehub.ipynb with steps to install huggingface_hub package and use HuggingFaceHubEmbeddings. **Dependencies:** None, **Twitter handle:** I do not have a Twitter account --------- Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
46 lines
1.4 KiB
Python
46 lines
1.4 KiB
Python
"""Test HuggingFaceHub embeddings."""
|
|
import pytest
|
|
|
|
from langchain_community.embeddings import HuggingFaceHubEmbeddings
|
|
|
|
|
|
def test_huggingfacehub_embedding_documents() -> None:
|
|
"""Test huggingfacehub embeddings."""
|
|
documents = ["foo bar"]
|
|
embedding = HuggingFaceHubEmbeddings()
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
async def test_huggingfacehub_embedding_async_documents() -> None:
|
|
"""Test huggingfacehub embeddings."""
|
|
documents = ["foo bar"]
|
|
embedding = HuggingFaceHubEmbeddings()
|
|
output = await embedding.aembed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
def test_huggingfacehub_embedding_query() -> None:
|
|
"""Test huggingfacehub embeddings."""
|
|
document = "foo bar"
|
|
embedding = HuggingFaceHubEmbeddings()
|
|
output = embedding.embed_query(document)
|
|
assert len(output) == 768
|
|
|
|
|
|
async def test_huggingfacehub_embedding_async_query() -> None:
|
|
"""Test huggingfacehub embeddings."""
|
|
document = "foo bar"
|
|
embedding = HuggingFaceHubEmbeddings()
|
|
output = await embedding.aembed_query(document)
|
|
assert len(output) == 768
|
|
|
|
|
|
def test_huggingfacehub_embedding_invalid_repo() -> None:
|
|
"""Test huggingfacehub embedding repo id validation."""
|
|
# Only sentence-transformers models are currently supported.
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceHubEmbeddings(repo_id="allenai/specter")
|