langchain/libs/community/langchain_community/llms/tongyi.py
Bob Lin 5de1dc72b9
community[patch]: Update Tongyi default model_name (#14844)
<img width="1305" alt="Screenshot 2023-12-18 at 9 54 01 PM"
src="https://github.com/langchain-ai/langchain/assets/10000925/c943fd81-cd48-46eb-8dff-4680424d9ba9">

The current model is no longer available.
2023-12-18 11:35:53 -05:00

278 lines
9.4 KiB
Python

from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import get_from_dict_or_env
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
logger = logging.getLogger(__name__)
def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]:
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _generate_with_retry(**_kwargs: Any) -> Any:
resp = llm.client.call(**_kwargs)
if resp.status_code == 200:
return resp
elif resp.status_code in [400, 401]:
raise ValueError(
f"status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}"
)
else:
raise HTTPError(
f"HTTP error occurred: status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}",
response=resp,
)
return _generate_with_retry(**kwargs)
def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _stream_generate_with_retry(**_kwargs: Any) -> Any:
stream_resps = []
resps = llm.client.call(**_kwargs)
for resp in resps:
if resp.status_code == 200:
stream_resps.append(resp)
elif resp.status_code in [400, 401]:
raise ValueError(
f"status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}"
)
else:
raise HTTPError(
f"HTTP error occurred: status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}",
response=resp,
)
return stream_resps
return _stream_generate_with_retry(**kwargs)
class Tongyi(LLM):
"""Tongyi Qwen large language models.
To use, you should have the ``dashscope`` python package installed, and the
environment variable ``DASHSCOPE_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms import Tongyi
Tongyi = tongyi()
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
@classmethod
def is_lc_serializable(cls) -> bool:
return False
client: Any #: :meta private:
model_name: str = "qwen-plus"
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
top_p: float = 0.8
"""Total probability mass of tokens to consider at each step."""
dashscope_api_key: Optional[str] = None
"""Dashscope api key provide by alicloud."""
n: int = 1
"""How many completions to generate for each prompt."""
streaming: bool = False
"""Whether to stream the results or not."""
max_retries: int = 10
"""Maximum number of retries to make when generating."""
prefix_messages: List = Field(default_factory=list)
"""Series of messages for Chat input."""
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "tongyi"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope`."
)
try:
values["client"] = dashscope.Generation
except AttributeError:
raise ValueError(
"`dashscope` has no `Generation` attribute, this is likely "
"due to an old version of the dashscope package. Try upgrading it "
"with `pip install --upgrade dashscope`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
normal_params = {
"top_p": self.top_p,
}
return {**normal_params, **self.model_kwargs}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Tongyi's generate endpoint.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = tongyi("Tell me a joke.")
"""
params: Dict[str, Any] = {
**{"model": self.model_name},
**self._default_params,
**kwargs,
}
completion = generate_with_retry(
self,
prompt=prompt,
**params,
)
return completion["output"]["text"]
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
params: Dict[str, Any] = {
**{"model": self.model_name},
**self._default_params,
**kwargs,
}
if self.streaming:
if len(prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
params["stream"] = True
temp = ""
for stream_resp in stream_generate_with_retry(
self, prompt=prompts[0], **params
):
if run_manager:
stream_resp_text = stream_resp["output"]["text"]
stream_resp_text = stream_resp_text.replace(temp, "")
# Ali Cloud's streaming transmission interface, each return content
# will contain the output
# of the previous round(as of September 20, 2023, future updates to
# the Alibaba Cloud API may vary)
run_manager.on_llm_new_token(stream_resp_text)
# The implementation of streaming transmission primarily relies on
# the "on_llm_new_token" method
# of the streaming callback.
temp = stream_resp["output"]["text"]
generations.append(
[
Generation(
text=stream_resp["output"]["text"],
generation_info=dict(
finish_reason=stream_resp["output"]["finish_reason"],
),
)
]
)
generations.reverse()
# In the official implementation of the OpenAI API,
# the "generations" parameter passed to LLMResult seems to be a 1*1*1
# two-dimensional list
# (including in non-streaming mode).
# Considering that Alibaba Cloud's streaming transmission
# (as of September 20, 2023, future updates to the Alibaba Cloud API may
# vary)
# includes the output of the previous round in each return,
# reversing this "generations" list should suffice
# (This is the solution with the least amount of changes to the source code,
# while still allowing for convenient modifications in the future,
# although it may result in slightly more memory consumption).
else:
for prompt in prompts:
completion = generate_with_retry(
self,
prompt=prompt,
**params,
)
generations.append(
[
Generation(
text=completion["output"]["text"],
generation_info=dict(
finish_reason=completion["output"]["finish_reason"],
),
)
]
)
return LLMResult(generations=generations)