mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
74 lines
2.3 KiB
Python
74 lines
2.3 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Baseten(LLM):
|
|
"""Baseten models.
|
|
|
|
To use, you should have the ``baseten`` python package installed,
|
|
and run ``baseten.login()`` with your Baseten API key.
|
|
|
|
The required ``model`` param can be either a model id or model
|
|
version id. Using a model version ID will result in
|
|
slightly faster invocation.
|
|
Any other model parameters can also
|
|
be passed in with the format input={model_param: value, ...}
|
|
|
|
The Baseten model must accept a dictionary of input with the key
|
|
"prompt" and return a dictionary with a key "data" which maps
|
|
to a list of response strings.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
from langchain_community.llms import Baseten
|
|
my_model = Baseten(model="MODEL_ID")
|
|
output = my_model("prompt")
|
|
"""
|
|
|
|
model: str
|
|
input: Dict[str, Any] = Field(default_factory=dict)
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
**{"model_kwargs": self.model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of model."""
|
|
return "baseten"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call to Baseten deployed model endpoint."""
|
|
try:
|
|
import baseten
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"Could not import Baseten Python package. "
|
|
"Please install it with `pip install baseten`."
|
|
) from exc
|
|
|
|
# get the model and version
|
|
try:
|
|
model = baseten.deployed_model_version_id(self.model)
|
|
response = model.predict({"prompt": prompt, **kwargs})
|
|
except baseten.common.core.ApiError:
|
|
model = baseten.deployed_model_id(self.model)
|
|
response = model.predict({"prompt": prompt, **kwargs})
|
|
return "".join(response)
|