mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
159 lines
5.8 KiB
Python
159 lines
5.8 KiB
Python
import csv
|
|
from io import TextIOWrapper
|
|
from typing import Any, Dict, List, Optional, Sequence
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
from langchain_community.document_loaders.helpers import detect_file_encodings
|
|
from langchain_community.document_loaders.unstructured import (
|
|
UnstructuredFileLoader,
|
|
validate_unstructured_version,
|
|
)
|
|
|
|
|
|
class CSVLoader(BaseLoader):
|
|
"""Load a `CSV` file into a list of Documents.
|
|
|
|
Each document represents one row of the CSV file. Every row is converted into a
|
|
key/value pair and outputted to a new line in the document's page_content.
|
|
|
|
The source for each document loaded from csv is set to the value of the
|
|
`file_path` argument for all documents by default.
|
|
You can override this by setting the `source_column` argument to the
|
|
name of a column in the CSV file.
|
|
The source of each document will then be set to the value of the column
|
|
with the name specified in `source_column`.
|
|
|
|
Output Example:
|
|
.. code-block:: txt
|
|
|
|
column1: value1
|
|
column2: value2
|
|
column3: value3
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
source_column: Optional[str] = None,
|
|
metadata_columns: Sequence[str] = (),
|
|
csv_args: Optional[Dict] = None,
|
|
encoding: Optional[str] = None,
|
|
autodetect_encoding: bool = False,
|
|
):
|
|
"""
|
|
|
|
Args:
|
|
file_path: The path to the CSV file.
|
|
source_column: The name of the column in the CSV file to use as the source.
|
|
Optional. Defaults to None.
|
|
metadata_columns: A sequence of column names to use as metadata. Optional.
|
|
csv_args: A dictionary of arguments to pass to the csv.DictReader.
|
|
Optional. Defaults to None.
|
|
encoding: The encoding of the CSV file. Optional. Defaults to None.
|
|
autodetect_encoding: Whether to try to autodetect the file encoding.
|
|
"""
|
|
self.file_path = file_path
|
|
self.source_column = source_column
|
|
self.metadata_columns = metadata_columns
|
|
self.encoding = encoding
|
|
self.csv_args = csv_args or {}
|
|
self.autodetect_encoding = autodetect_encoding
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load data into document objects."""
|
|
|
|
docs = []
|
|
try:
|
|
with open(self.file_path, newline="", encoding=self.encoding) as csvfile:
|
|
docs = self.__read_file(csvfile)
|
|
except UnicodeDecodeError as e:
|
|
if self.autodetect_encoding:
|
|
detected_encodings = detect_file_encodings(self.file_path)
|
|
for encoding in detected_encodings:
|
|
try:
|
|
with open(
|
|
self.file_path, newline="", encoding=encoding.encoding
|
|
) as csvfile:
|
|
docs = self.__read_file(csvfile)
|
|
break
|
|
except UnicodeDecodeError:
|
|
continue
|
|
else:
|
|
raise RuntimeError(f"Error loading {self.file_path}") from e
|
|
except Exception as e:
|
|
raise RuntimeError(f"Error loading {self.file_path}") from e
|
|
|
|
return docs
|
|
|
|
def __read_file(self, csvfile: TextIOWrapper) -> List[Document]:
|
|
docs = []
|
|
|
|
csv_reader = csv.DictReader(csvfile, **self.csv_args) # type: ignore
|
|
for i, row in enumerate(csv_reader):
|
|
try:
|
|
source = (
|
|
row[self.source_column]
|
|
if self.source_column is not None
|
|
else self.file_path
|
|
)
|
|
except KeyError:
|
|
raise ValueError(
|
|
f"Source column '{self.source_column}' not found in CSV file."
|
|
)
|
|
content = "\n".join(
|
|
f"{k.strip()}: {v.strip() if v is not None else v}"
|
|
for k, v in row.items()
|
|
if k not in self.metadata_columns
|
|
)
|
|
metadata = {"source": source, "row": i}
|
|
for col in self.metadata_columns:
|
|
try:
|
|
metadata[col] = row[col]
|
|
except KeyError:
|
|
raise ValueError(f"Metadata column '{col}' not found in CSV file.")
|
|
doc = Document(page_content=content, metadata=metadata)
|
|
docs.append(doc)
|
|
|
|
return docs
|
|
|
|
|
|
class UnstructuredCSVLoader(UnstructuredFileLoader):
|
|
"""Load `CSV` files using `Unstructured`.
|
|
|
|
Like other
|
|
Unstructured loaders, UnstructuredCSVLoader can be used in both
|
|
"single" and "elements" mode. If you use the loader in "elements"
|
|
mode, the CSV file will be a single Unstructured Table element.
|
|
If you use the loader in "elements" mode, an HTML representation
|
|
of the table will be available in the "text_as_html" key in the
|
|
document metadata.
|
|
|
|
Examples
|
|
--------
|
|
from langchain_community.document_loaders.csv_loader import UnstructuredCSVLoader
|
|
|
|
loader = UnstructuredCSVLoader("stanley-cups.csv", mode="elements")
|
|
docs = loader.load()
|
|
"""
|
|
|
|
def __init__(
|
|
self, file_path: str, mode: str = "single", **unstructured_kwargs: Any
|
|
):
|
|
"""
|
|
|
|
Args:
|
|
file_path: The path to the CSV file.
|
|
mode: The mode to use when loading the CSV file.
|
|
Optional. Defaults to "single".
|
|
**unstructured_kwargs: Keyword arguments to pass to unstructured.
|
|
"""
|
|
validate_unstructured_version(min_unstructured_version="0.6.8")
|
|
super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)
|
|
|
|
def _get_elements(self) -> List:
|
|
from unstructured.partition.csv import partition_csv
|
|
|
|
return partition_csv(filename=self.file_path, **self.unstructured_kwargs)
|