mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
195 lines
4.4 KiB
Plaintext
195 lines
4.4 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "833c4789",
|
||
"metadata": {},
|
||
"source": [
|
||
"# AwaDB\n",
|
||
">[AwaDB](https://github.com/awa-ai/awadb) is an AI Native database for the search and storage of embedding vectors used by LLM Applications.\n",
|
||
"\n",
|
||
"This notebook shows how to use functionality related to the `AwaDB`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "252930ea",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"!pip install awadb"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "f2b71a47",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||
"from langchain.vectorstores import AwaDB\n",
|
||
"from langchain.document_loaders import TextLoader"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "49be0bac",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
|
||
"documents = loader.load()\n",
|
||
"text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)\n",
|
||
"docs = text_splitter.split_documents(documents)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "18714278",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"db = AwaDB.from_documents(docs)\n",
|
||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||
"docs = db.similarity_search(query)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "4b172de8",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(docs[0].page_content)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "87fec6b5",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Similarity search with score"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "17231924",
|
||
"metadata": {},
|
||
"source": [
|
||
"The returned distance score is between 0-1. 0 is dissimilar, 1 is the most similar"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "f40ddae1",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"docs = db.similarity_search_with_score(query)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "93cd0b7a",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"(Document(page_content='And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}), 0.561813814013747)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(docs[0])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "0b49fb59",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Restore the table created and added data before"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "1bfa6e25",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"AwaDB automatically persists added document data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2a0f3b35",
|
||
"metadata": {},
|
||
"source": [
|
||
"If you can restore the table you created and added before, you can just do this as below:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "1fd4b5b0",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"awadb_client = awadb.Client()\n",
|
||
"ret = awadb_client.Load(\"langchain_awadb\")\n",
|
||
"if ret:\n",
|
||
" print(\"awadb load table success\")\n",
|
||
"else:\n",
|
||
" print(\"awadb load table failed\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "raw",
|
||
"id": "aba255c2",
|
||
"metadata": {},
|
||
"source": [
|
||
"awadb load table success"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.6"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|