mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
349 lines
11 KiB
Plaintext
349 lines
11 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Comet"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"![](https://user-images.githubusercontent.com/7529846/230328046-a8b18c51-12e3-4617-9b39-97614a571a2d.png)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this guide we will demonstrate how to track your Langchain Experiments, Evaluation Metrics, and LLM Sessions with [Comet](https://www.comet.com/site/?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook). \n",
|
|
"\n",
|
|
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/ecosystem/comet_tracking.html\">\n",
|
|
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
|
|
"</a>\n",
|
|
"\n",
|
|
"**Example Project:** [Comet with LangChain](https://www.comet.com/examples/comet-example-langchain/view/b5ZThK6OFdhKWVSP3fDfRtrNF/panels?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"![](https://user-images.githubusercontent.com/7529846/230326720-a9711435-9c6f-4edb-a707-94b67271ab25.png)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Install Comet and Dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install comet_ml langchain openai google-search-results spacy textstat pandas\n",
|
|
"\n",
|
|
"import sys\n",
|
|
"\n",
|
|
"!{sys.executable} -m spacy download en_core_web_sm"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Initialize Comet and Set your Credentials"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can grab your [Comet API Key here](https://www.comet.com/signup?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook) or click the link after initializing Comet"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import comet_ml\n",
|
|
"\n",
|
|
"comet_ml.init(project_name=\"comet-example-langchain\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Set OpenAI and SerpAPI credentials"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"You will need an [OpenAI API Key](https://platform.openai.com/account/api-keys) and a [SerpAPI API Key](https://serpapi.com/dashboard) to run the following examples"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"os.environ[\"OPENAI_API_KEY\"] = \"...\"\n",
|
|
"# os.environ[\"OPENAI_ORGANIZATION\"] = \"...\"\n",
|
|
"os.environ[\"SERPAPI_API_KEY\"] = \"...\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Scenario 1: Using just an LLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from datetime import datetime\n",
|
|
"\n",
|
|
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
|
"from langchain.llms import OpenAI\n",
|
|
"\n",
|
|
"comet_callback = CometCallbackHandler(\n",
|
|
" project_name=\"comet-example-langchain\",\n",
|
|
" complexity_metrics=True,\n",
|
|
" stream_logs=True,\n",
|
|
" tags=[\"llm\"],\n",
|
|
" visualizations=[\"dep\"],\n",
|
|
")\n",
|
|
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
|
|
"llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True)\n",
|
|
"\n",
|
|
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\", \"Tell me a fact\"] * 3)\n",
|
|
"print(\"LLM result\", llm_result)\n",
|
|
"comet_callback.flush_tracker(llm, finish=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Scenario 2: Using an LLM in a Chain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
|
"from langchain.chains import LLMChain\n",
|
|
"from langchain.llms import OpenAI\n",
|
|
"from langchain.prompts import PromptTemplate\n",
|
|
"\n",
|
|
"comet_callback = CometCallbackHandler(\n",
|
|
" complexity_metrics=True,\n",
|
|
" project_name=\"comet-example-langchain\",\n",
|
|
" stream_logs=True,\n",
|
|
" tags=[\"synopsis-chain\"],\n",
|
|
")\n",
|
|
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
|
|
"llm = OpenAI(temperature=0.9, callbacks=callbacks)\n",
|
|
"\n",
|
|
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
|
|
"Title: {title}\n",
|
|
"Playwright: This is a synopsis for the above play:\"\"\"\n",
|
|
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
|
|
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)\n",
|
|
"\n",
|
|
"test_prompts = [{\"title\": \"Documentary about Bigfoot in Paris\"}]\n",
|
|
"print(synopsis_chain.apply(test_prompts))\n",
|
|
"comet_callback.flush_tracker(synopsis_chain, finish=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Scenario 3: Using An Agent with Tools "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.agents import initialize_agent, load_tools\n",
|
|
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
|
"from langchain.llms import OpenAI\n",
|
|
"\n",
|
|
"comet_callback = CometCallbackHandler(\n",
|
|
" project_name=\"comet-example-langchain\",\n",
|
|
" complexity_metrics=True,\n",
|
|
" stream_logs=True,\n",
|
|
" tags=[\"agent\"],\n",
|
|
")\n",
|
|
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
|
|
"llm = OpenAI(temperature=0.9, callbacks=callbacks)\n",
|
|
"\n",
|
|
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callbacks=callbacks)\n",
|
|
"agent = initialize_agent(\n",
|
|
" tools,\n",
|
|
" llm,\n",
|
|
" agent=\"zero-shot-react-description\",\n",
|
|
" callbacks=callbacks,\n",
|
|
" verbose=True,\n",
|
|
")\n",
|
|
"agent.run(\n",
|
|
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
|
|
")\n",
|
|
"comet_callback.flush_tracker(agent, finish=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Scenario 4: Using Custom Evaluation Metrics"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The `CometCallbackManager` also allows you to define and use Custom Evaluation Metrics to assess generated outputs from your model. Let's take a look at how this works. \n",
|
|
"\n",
|
|
"\n",
|
|
"In the snippet below, we will use the [ROUGE](https://huggingface.co/spaces/evaluate-metric/rouge) metric to evaluate the quality of a generated summary of an input prompt. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install rouge-score"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from rouge_score import rouge_scorer\n",
|
|
"\n",
|
|
"from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
|
|
"from langchain.chains import LLMChain\n",
|
|
"from langchain.llms import OpenAI\n",
|
|
"from langchain.prompts import PromptTemplate\n",
|
|
"\n",
|
|
"\n",
|
|
"class Rouge:\n",
|
|
" def __init__(self, reference):\n",
|
|
" self.reference = reference\n",
|
|
" self.scorer = rouge_scorer.RougeScorer([\"rougeLsum\"], use_stemmer=True)\n",
|
|
"\n",
|
|
" def compute_metric(self, generation, prompt_idx, gen_idx):\n",
|
|
" prediction = generation.text\n",
|
|
" results = self.scorer.score(target=self.reference, prediction=prediction)\n",
|
|
"\n",
|
|
" return {\n",
|
|
" \"rougeLsum_score\": results[\"rougeLsum\"].fmeasure,\n",
|
|
" \"reference\": self.reference,\n",
|
|
" }\n",
|
|
"\n",
|
|
"\n",
|
|
"reference = \"\"\"\n",
|
|
"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building.\n",
|
|
"It was the first structure to reach a height of 300 metres.\n",
|
|
"\n",
|
|
"It is now taller than the Chrysler Building in New York City by 5.2 metres (17 ft)\n",
|
|
"Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France .\n",
|
|
"\"\"\"\n",
|
|
"rouge_score = Rouge(reference=reference)\n",
|
|
"\n",
|
|
"template = \"\"\"Given the following article, it is your job to write a summary.\n",
|
|
"Article:\n",
|
|
"{article}\n",
|
|
"Summary: This is the summary for the above article:\"\"\"\n",
|
|
"prompt_template = PromptTemplate(input_variables=[\"article\"], template=template)\n",
|
|
"\n",
|
|
"comet_callback = CometCallbackHandler(\n",
|
|
" project_name=\"comet-example-langchain\",\n",
|
|
" complexity_metrics=False,\n",
|
|
" stream_logs=True,\n",
|
|
" tags=[\"custom_metrics\"],\n",
|
|
" custom_metrics=rouge_score.compute_metric,\n",
|
|
")\n",
|
|
"callbacks = [StdOutCallbackHandler(), comet_callback]\n",
|
|
"llm = OpenAI(temperature=0.9)\n",
|
|
"\n",
|
|
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)\n",
|
|
"\n",
|
|
"test_prompts = [\n",
|
|
" {\n",
|
|
" \"article\": \"\"\"\n",
|
|
" The tower is 324 metres (1,063 ft) tall, about the same height as\n",
|
|
" an 81-storey building, and the tallest structure in Paris. Its base is square,\n",
|
|
" measuring 125 metres (410 ft) on each side.\n",
|
|
" During its construction, the Eiffel Tower surpassed the\n",
|
|
" Washington Monument to become the tallest man-made structure in the world,\n",
|
|
" a title it held for 41 years until the Chrysler Building\n",
|
|
" in New York City was finished in 1930.\n",
|
|
"\n",
|
|
" It was the first structure to reach a height of 300 metres.\n",
|
|
" Due to the addition of a broadcasting aerial at the top of the tower in 1957,\n",
|
|
" it is now taller than the Chrysler Building by 5.2 metres (17 ft).\n",
|
|
"\n",
|
|
" Excluding transmitters, the Eiffel Tower is the second tallest\n",
|
|
" free-standing structure in France after the Millau Viaduct.\n",
|
|
" \"\"\"\n",
|
|
" }\n",
|
|
"]\n",
|
|
"print(synopsis_chain.apply(test_prompts, callbacks=callbacks))\n",
|
|
"comet_callback.flush_tracker(synopsis_chain, finish=True)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|