langchain/docs/extras/integrations/llms/writer.ipynb
2023-07-23 23:23:16 -07:00

149 lines
2.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Writer\n",
"\n",
"[Writer](https://writer.com/) is a platform to generate different language content.\n",
"\n",
"This example goes over how to use LangChain to interact with `Writer` [models](https://dev.writer.com/docs/models).\n",
"\n",
"You have to get the WRITER_API_KEY [here](https://dev.writer.com/docs)."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"from getpass import getpass\n",
"\n",
"WRITER_API_KEY = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"WRITER_API_KEY\"] = WRITER_API_KEY"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.llms import Writer\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# If you get an error, probably, you need to set up the \"base_url\" parameter that can be taken from the error log.\n",
"\n",
"llm = Writer()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}