mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
b4a126ae71
#8074 Co-authored-by: Leonid Kuligin <kuligin@google.com>
247 lines
7.9 KiB
Plaintext
247 lines
7.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Google Cloud Platform Vertex AI PaLM \n",
|
|
"\n",
|
|
"Note: This is seperate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there. \n",
|
|
"\n",
|
|
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) Customer Data to train its foundation models as part of Google Cloud`s AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
|
|
"\n",
|
|
"To use Vertex AI PaLM you must have the `google-cloud-aiplatform` Python package installed and either:\n",
|
|
"- Have credentials configured for your environment (gcloud, workload identity, etc...)\n",
|
|
"- Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable\n",
|
|
"\n",
|
|
"This codebase uses the `google.auth` library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.\n",
|
|
"\n",
|
|
"For more information, see: \n",
|
|
"- https://cloud.google.com/docs/authentication/application-default-credentials#GAC\n",
|
|
"- https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"#!pip install google-cloud-aiplatform"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chat_models import ChatVertexAI\n",
|
|
"from langchain.prompts.chat import (\n",
|
|
" ChatPromptTemplate,\n",
|
|
" SystemMessagePromptTemplate,\n",
|
|
" HumanMessagePromptTemplate,\n",
|
|
")\n",
|
|
"from langchain.schema import HumanMessage, SystemMessage"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"chat = ChatVertexAI()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content='Sure, here is the translation of the sentence \"I love programming\" from English to French:\\n\\nJ\\'aime programmer.', additional_kwargs={}, example=False)"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"messages = [\n",
|
|
" SystemMessage(\n",
|
|
" content=\"You are a helpful assistant that translates English to French.\"\n",
|
|
" ),\n",
|
|
" HumanMessage(\n",
|
|
" content=\"Translate this sentence from English to French. I love programming.\"\n",
|
|
" ),\n",
|
|
"]\n",
|
|
"chat(messages)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n",
|
|
"\n",
|
|
"For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = (\n",
|
|
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
|
|
")\n",
|
|
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
|
|
"human_template = \"{text}\"\n",
|
|
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content='Sure, here is the translation of \"I love programming\" in French:\\n\\nJ\\'aime programmer.', additional_kwargs={}, example=False)"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"chat_prompt = ChatPromptTemplate.from_messages(\n",
|
|
" [system_message_prompt, human_message_prompt]\n",
|
|
")\n",
|
|
"\n",
|
|
"# get a chat completion from the formatted messages\n",
|
|
"chat(\n",
|
|
" chat_prompt.format_prompt(\n",
|
|
" input_language=\"English\", output_language=\"French\", text=\"I love programming.\"\n",
|
|
" ).to_messages()\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2023-06-17T21:09:25.423568Z",
|
|
"iopub.status.busy": "2023-06-17T21:09:25.423213Z",
|
|
"iopub.status.idle": "2023-06-17T21:09:25.429641Z",
|
|
"shell.execute_reply": "2023-06-17T21:09:25.429060Z",
|
|
"shell.execute_reply.started": "2023-06-17T21:09:25.423546Z"
|
|
},
|
|
"tags": []
|
|
},
|
|
"source": [
|
|
"You can now leverage the Codey API for code chat within Vertex AI. The model name is:\n",
|
|
"- codechat-bison: for code assistance"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2023-06-17T21:30:43.974841Z",
|
|
"iopub.status.busy": "2023-06-17T21:30:43.974431Z",
|
|
"iopub.status.idle": "2023-06-17T21:30:44.248119Z",
|
|
"shell.execute_reply": "2023-06-17T21:30:44.247362Z",
|
|
"shell.execute_reply.started": "2023-06-17T21:30:43.974820Z"
|
|
},
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"chat = ChatVertexAI(model_name=\"codechat-bison\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"execution": {
|
|
"iopub.execute_input": "2023-06-17T21:30:45.146093Z",
|
|
"iopub.status.busy": "2023-06-17T21:30:45.145752Z",
|
|
"iopub.status.idle": "2023-06-17T21:30:47.449126Z",
|
|
"shell.execute_reply": "2023-06-17T21:30:47.448609Z",
|
|
"shell.execute_reply.started": "2023-06-17T21:30:45.146069Z"
|
|
},
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"AIMessage(content='The following Python function can be used to identify all prime numbers up to a given integer:\\n\\n```\\ndef is_prime(n):\\n \"\"\"\\n Determines whether the given integer is prime.\\n\\n Args:\\n n: The integer to be tested for primality.\\n\\n Returns:\\n True if n is prime, False otherwise.\\n \"\"\"\\n\\n # Check if n is divisible by 2.\\n if n % 2 == 0:\\n return False\\n\\n # Check if n is divisible by any integer from 3 to the square root', additional_kwargs={}, example=False)"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"messages = [\n",
|
|
" HumanMessage(\n",
|
|
" content=\"How do I create a python function to identify all prime numbers?\"\n",
|
|
" )\n",
|
|
"]\n",
|
|
"chat(messages)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "cc99336516f23363341912c6723b01ace86f02e26b4290be1efc0677e2e2ec24"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|