mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
4c132b4cc6
After upgrading langchain-community to 0.0.22, it's not possible to use openai from the community package with streaming=True ``` File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_community/chat_models/openai.py", line 434, in _generate return generate_from_stream(stream_iter) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 65, in generate_from_stream for chunk in stream: File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_community/chat_models/openai.py", line 418, in _stream run_manager.on_llm_new_token(chunk.text, chunk=cg_chunk) ^^^^^^^^^^ AttributeError: 'AIMessageChunk' object has no attribute 'text' ``` Fix regression of https://github.com/langchain-ai/langchain/pull/17907 **Twitter handle:** @nicoloboschi
242 lines
8.4 KiB
Python
242 lines
8.4 KiB
Python
import json
|
|
import logging
|
|
import re
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import root_validator
|
|
from langchain_core.utils import get_pydantic_field_names
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["role"]
|
|
if role == "user":
|
|
return HumanMessage(content=_dict["content"])
|
|
elif role == "assistant":
|
|
return AIMessage(content=_dict.get("content", "") or "")
|
|
else:
|
|
return ChatMessage(content=_dict["content"], role=role)
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
return message_dict
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = _dict.get("role")
|
|
content = _dict.get("content") or ""
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(content=content)
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role)
|
|
else:
|
|
return default_class(content=content)
|
|
|
|
|
|
class LlamaEdgeChatService(BaseChatModel):
|
|
"""Chat with LLMs via `llama-api-server`
|
|
|
|
For the information about `llama-api-server`, visit https://github.com/second-state/LlamaEdge
|
|
"""
|
|
|
|
request_timeout: int = 60
|
|
"""request timeout for chat http requests"""
|
|
service_url: Optional[str] = None
|
|
"""URL of WasmChat service"""
|
|
model: str = "NA"
|
|
"""model name, default is `NA`."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
if field_name not in all_required_field_names:
|
|
logger.warning(
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
if invalid_model_kwargs:
|
|
raise ValueError(
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
)
|
|
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
res = self._chat(messages, **kwargs)
|
|
|
|
if res.status_code != 200:
|
|
raise ValueError(f"Error code: {res.status_code}, reason: {res.reason}")
|
|
|
|
response = res.json()
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
res = self._chat(messages, **kwargs)
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
substring = '"object":"chat.completion.chunk"}'
|
|
for line in res.iter_lines():
|
|
chunks = []
|
|
if line:
|
|
json_string = line.decode("utf-8")
|
|
|
|
# Find all positions of the substring
|
|
positions = [m.start() for m in re.finditer(substring, json_string)]
|
|
positions = [-1 * len(substring)] + positions
|
|
|
|
for i in range(len(positions) - 1):
|
|
chunk = json.loads(
|
|
json_string[
|
|
positions[i] + len(substring) : positions[i + 1]
|
|
+ len(substring)
|
|
]
|
|
)
|
|
chunks.append(chunk)
|
|
|
|
for chunk in chunks:
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.dict()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
|
|
choice = chunk["choices"][0]
|
|
chunk = _convert_delta_to_message_chunk(
|
|
choice["delta"], default_chunk_class
|
|
)
|
|
if (
|
|
choice.get("finish_reason") is not None
|
|
and choice.get("finish_reason") == "stop"
|
|
):
|
|
break
|
|
finish_reason = choice.get("finish_reason")
|
|
generation_info = (
|
|
dict(finish_reason=finish_reason)
|
|
if finish_reason is not None
|
|
else None
|
|
)
|
|
default_chunk_class = chunk.__class__
|
|
cg_chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info
|
|
)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(cg_chunk.text, chunk=cg_chunk)
|
|
yield cg_chunk
|
|
|
|
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
|
|
if self.service_url is None:
|
|
res = requests.models.Response()
|
|
res.status_code = 503
|
|
res.reason = "The IP address or port of the chat service is incorrect."
|
|
return res
|
|
|
|
service_url = f"{self.service_url}/v1/chat/completions"
|
|
|
|
if self.streaming:
|
|
payload = {
|
|
"model": self.model,
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
"stream": self.streaming,
|
|
}
|
|
else:
|
|
payload = {
|
|
"model": self.model,
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
}
|
|
|
|
res = requests.post(
|
|
url=service_url,
|
|
timeout=self.request_timeout,
|
|
headers={
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
},
|
|
data=json.dumps(payload),
|
|
)
|
|
|
|
return res
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
message = _convert_dict_to_message(response["choices"][0].get("message"))
|
|
generations = [ChatGeneration(message=message)]
|
|
|
|
token_usage = response["usage"]
|
|
llm_output = {"token_usage": token_usage, "model": self.model}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "wasm-chat"
|