mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
7248e98b9e
Issue: #17390 Co-authored-by: hasan <hasan@m2sys.com>
1056 lines
40 KiB
Python
1056 lines
40 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import Any, Iterable, List, Optional, Tuple, Union
|
|
from uuid import uuid4
|
|
|
|
import numpy as np
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DEFAULT_MILVUS_CONNECTION = {
|
|
"host": "localhost",
|
|
"port": "19530",
|
|
"user": "",
|
|
"password": "",
|
|
"secure": False,
|
|
}
|
|
|
|
|
|
class Milvus(VectorStore):
|
|
"""`Milvus` vector store.
|
|
|
|
You need to install `pymilvus` and run Milvus.
|
|
|
|
See the following documentation for how to run a Milvus instance:
|
|
https://milvus.io/docs/install_standalone-docker.md
|
|
|
|
If looking for a hosted Milvus, take a look at this documentation:
|
|
https://zilliz.com/cloud and make use of the Zilliz vectorstore found in
|
|
this project.
|
|
|
|
IF USING L2/IP metric, IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA.
|
|
|
|
Args:
|
|
embedding_function (Embeddings): Function used to embed the text.
|
|
collection_name (str): Which Milvus collection to use. Defaults to
|
|
"LangChainCollection".
|
|
collection_description (str): The description of the collection. Defaults to
|
|
"".
|
|
collection_properties (Optional[dict[str, any]]): The collection properties.
|
|
Defaults to None.
|
|
If set, will override collection existing properties.
|
|
For example: {"collection.ttl.seconds": 60}.
|
|
connection_args (Optional[dict[str, any]]): The connection args used for
|
|
this class comes in the form of a dict.
|
|
consistency_level (str): The consistency level to use for a collection.
|
|
Defaults to "Session".
|
|
index_params (Optional[dict]): Which index params to use. Defaults to
|
|
HNSW/AUTOINDEX depending on service.
|
|
search_params (Optional[dict]): Which search params to use. Defaults to
|
|
default of index.
|
|
drop_old (Optional[bool]): Whether to drop the current collection. Defaults
|
|
to False.
|
|
auto_id (bool): Whether to enable auto id for primary key. Defaults to False.
|
|
If False, you needs to provide text ids (string less than 65535 bytes).
|
|
If True, Milvus will generate unique integers as primary keys.
|
|
primary_field (str): Name of the primary key field. Defaults to "pk".
|
|
text_field (str): Name of the text field. Defaults to "text".
|
|
vector_field (str): Name of the vector field. Defaults to "vector".
|
|
metadata_field (str): Name of the metadta field. Defaults to None.
|
|
When metadata_field is specified,
|
|
the document's metadata will store as json.
|
|
|
|
The connection args used for this class comes in the form of a dict,
|
|
here are a few of the options:
|
|
address (str): The actual address of Milvus
|
|
instance. Example address: "localhost:19530"
|
|
uri (str): The uri of Milvus instance. Example uri:
|
|
"http://randomwebsite:19530",
|
|
"tcp:foobarsite:19530",
|
|
"https://ok.s3.south.com:19530".
|
|
host (str): The host of Milvus instance. Default at "localhost",
|
|
PyMilvus will fill in the default host if only port is provided.
|
|
port (str/int): The port of Milvus instance. Default at 19530, PyMilvus
|
|
will fill in the default port if only host is provided.
|
|
user (str): Use which user to connect to Milvus instance. If user and
|
|
password are provided, we will add related header in every RPC call.
|
|
password (str): Required when user is provided. The password
|
|
corresponding to the user.
|
|
secure (bool): Default is false. If set to true, tls will be enabled.
|
|
client_key_path (str): If use tls two-way authentication, need to
|
|
write the client.key path.
|
|
client_pem_path (str): If use tls two-way authentication, need to
|
|
write the client.pem path.
|
|
ca_pem_path (str): If use tls two-way authentication, need to write
|
|
the ca.pem path.
|
|
server_pem_path (str): If use tls one-way authentication, need to
|
|
write the server.pem path.
|
|
server_name (str): If use tls, need to write the common name.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import Milvus
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
|
|
embedding = OpenAIEmbeddings()
|
|
# Connect to a milvus instance on localhost
|
|
milvus_store = Milvus(
|
|
embedding_function = Embeddings,
|
|
collection_name = "LangChainCollection",
|
|
drop_old = True,
|
|
auto_id = True
|
|
)
|
|
|
|
Raises:
|
|
ValueError: If the pymilvus python package is not installed.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_function: Embeddings,
|
|
collection_name: str = "LangChainCollection",
|
|
collection_description: str = "",
|
|
collection_properties: Optional[dict[str, Any]] = None,
|
|
connection_args: Optional[dict[str, Any]] = None,
|
|
consistency_level: str = "Session",
|
|
index_params: Optional[dict] = None,
|
|
search_params: Optional[dict] = None,
|
|
drop_old: Optional[bool] = False,
|
|
auto_id: bool = False,
|
|
*,
|
|
primary_field: str = "pk",
|
|
text_field: str = "text",
|
|
vector_field: str = "vector",
|
|
metadata_field: Optional[str] = None,
|
|
partition_key_field: Optional[str] = None,
|
|
partition_names: Optional[list] = None,
|
|
replica_number: int = 1,
|
|
timeout: Optional[float] = None,
|
|
):
|
|
"""Initialize the Milvus vector store."""
|
|
try:
|
|
from pymilvus import Collection, utility
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import pymilvus python package. "
|
|
"Please install it with `pip install pymilvus`."
|
|
)
|
|
|
|
# Default search params when one is not provided.
|
|
self.default_search_params = {
|
|
"IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}},
|
|
"IVF_SQ8": {"metric_type": "L2", "params": {"nprobe": 10}},
|
|
"IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}},
|
|
"HNSW": {"metric_type": "L2", "params": {"ef": 10}},
|
|
"RHNSW_FLAT": {"metric_type": "L2", "params": {"ef": 10}},
|
|
"RHNSW_SQ": {"metric_type": "L2", "params": {"ef": 10}},
|
|
"RHNSW_PQ": {"metric_type": "L2", "params": {"ef": 10}},
|
|
"IVF_HNSW": {"metric_type": "L2", "params": {"nprobe": 10, "ef": 10}},
|
|
"ANNOY": {"metric_type": "L2", "params": {"search_k": 10}},
|
|
"SCANN": {"metric_type": "L2", "params": {"search_k": 10}},
|
|
"AUTOINDEX": {"metric_type": "L2", "params": {}},
|
|
}
|
|
|
|
self.embedding_func = embedding_function
|
|
self.collection_name = collection_name
|
|
self.collection_description = collection_description
|
|
self.collection_properties = collection_properties
|
|
self.index_params = index_params
|
|
self.search_params = search_params
|
|
self.consistency_level = consistency_level
|
|
self.auto_id = auto_id
|
|
|
|
# In order for a collection to be compatible, pk needs to be varchar
|
|
self._primary_field = primary_field
|
|
# In order for compatibility, the text field will need to be called "text"
|
|
self._text_field = text_field
|
|
# In order for compatibility, the vector field needs to be called "vector"
|
|
self._vector_field = vector_field
|
|
self._metadata_field = metadata_field
|
|
self._partition_key_field = partition_key_field
|
|
self.fields: list[str] = []
|
|
self.partition_names = partition_names
|
|
self.replica_number = replica_number
|
|
self.timeout = timeout
|
|
|
|
# Create the connection to the server
|
|
if connection_args is None:
|
|
connection_args = DEFAULT_MILVUS_CONNECTION
|
|
self.alias = self._create_connection_alias(connection_args)
|
|
self.col: Optional[Collection] = None
|
|
|
|
# Grab the existing collection if it exists
|
|
if utility.has_collection(self.collection_name, using=self.alias):
|
|
self.col = Collection(
|
|
self.collection_name,
|
|
using=self.alias,
|
|
)
|
|
if self.collection_properties is not None:
|
|
self.col.set_properties(self.collection_properties)
|
|
# If need to drop old, drop it
|
|
if drop_old and isinstance(self.col, Collection):
|
|
self.col.drop()
|
|
self.col = None
|
|
|
|
# Initialize the vector store
|
|
self._init(
|
|
partition_names=partition_names,
|
|
replica_number=replica_number,
|
|
timeout=timeout,
|
|
)
|
|
|
|
@property
|
|
def embeddings(self) -> Embeddings:
|
|
return self.embedding_func
|
|
|
|
def _create_connection_alias(self, connection_args: dict) -> str:
|
|
"""Create the connection to the Milvus server."""
|
|
from pymilvus import MilvusException, connections
|
|
|
|
# Grab the connection arguments that are used for checking existing connection
|
|
host: str = connection_args.get("host", None)
|
|
port: Union[str, int] = connection_args.get("port", None)
|
|
address: str = connection_args.get("address", None)
|
|
uri: str = connection_args.get("uri", None)
|
|
user = connection_args.get("user", None)
|
|
|
|
# Order of use is host/port, uri, address
|
|
if host is not None and port is not None:
|
|
given_address = str(host) + ":" + str(port)
|
|
elif uri is not None:
|
|
if uri.startswith("https://"):
|
|
given_address = uri.split("https://")[1]
|
|
elif uri.startswith("http://"):
|
|
given_address = uri.split("http://")[1]
|
|
else:
|
|
logger.error("Invalid Milvus URI: %s", uri)
|
|
raise ValueError("Invalid Milvus URI: %s", uri)
|
|
elif address is not None:
|
|
given_address = address
|
|
else:
|
|
given_address = None
|
|
logger.debug("Missing standard address type for reuse attempt")
|
|
|
|
# User defaults to empty string when getting connection info
|
|
if user is not None:
|
|
tmp_user = user
|
|
else:
|
|
tmp_user = ""
|
|
|
|
# If a valid address was given, then check if a connection exists
|
|
if given_address is not None:
|
|
for con in connections.list_connections():
|
|
addr = connections.get_connection_addr(con[0])
|
|
if (
|
|
con[1]
|
|
and ("address" in addr)
|
|
and (addr["address"] == given_address)
|
|
and ("user" in addr)
|
|
and (addr["user"] == tmp_user)
|
|
):
|
|
logger.debug("Using previous connection: %s", con[0])
|
|
return con[0]
|
|
|
|
# Generate a new connection if one doesn't exist
|
|
alias = uuid4().hex
|
|
try:
|
|
connections.connect(alias=alias, **connection_args)
|
|
logger.debug("Created new connection using: %s", alias)
|
|
return alias
|
|
except MilvusException as e:
|
|
logger.error("Failed to create new connection using: %s", alias)
|
|
raise e
|
|
|
|
def _init(
|
|
self,
|
|
embeddings: Optional[list] = None,
|
|
metadatas: Optional[list[dict]] = None,
|
|
partition_names: Optional[list] = None,
|
|
replica_number: int = 1,
|
|
timeout: Optional[float] = None,
|
|
) -> None:
|
|
if embeddings is not None:
|
|
self._create_collection(embeddings, metadatas)
|
|
self._extract_fields()
|
|
self._create_index()
|
|
self._create_search_params()
|
|
self._load(
|
|
partition_names=partition_names,
|
|
replica_number=replica_number,
|
|
timeout=timeout,
|
|
)
|
|
|
|
def _create_collection(
|
|
self, embeddings: list, metadatas: Optional[list[dict]] = None
|
|
) -> None:
|
|
from pymilvus import (
|
|
Collection,
|
|
CollectionSchema,
|
|
DataType,
|
|
FieldSchema,
|
|
MilvusException,
|
|
)
|
|
from pymilvus.orm.types import infer_dtype_bydata
|
|
|
|
# Determine embedding dim
|
|
dim = len(embeddings[0])
|
|
fields = []
|
|
if self._metadata_field is not None:
|
|
fields.append(FieldSchema(self._metadata_field, DataType.JSON))
|
|
else:
|
|
# Determine metadata schema
|
|
if metadatas:
|
|
# Create FieldSchema for each entry in metadata.
|
|
for key, value in metadatas[0].items():
|
|
# Infer the corresponding datatype of the metadata
|
|
dtype = infer_dtype_bydata(value)
|
|
# Datatype isn't compatible
|
|
if dtype == DataType.UNKNOWN or dtype == DataType.NONE:
|
|
logger.error(
|
|
(
|
|
"Failure to create collection, "
|
|
"unrecognized dtype for key: %s"
|
|
),
|
|
key,
|
|
)
|
|
raise ValueError(f"Unrecognized datatype for {key}.")
|
|
# Dataype is a string/varchar equivalent
|
|
elif dtype == DataType.VARCHAR:
|
|
fields.append(
|
|
FieldSchema(key, DataType.VARCHAR, max_length=65_535)
|
|
)
|
|
else:
|
|
fields.append(FieldSchema(key, dtype))
|
|
|
|
# Create the text field
|
|
fields.append(
|
|
FieldSchema(self._text_field, DataType.VARCHAR, max_length=65_535)
|
|
)
|
|
# Create the primary key field
|
|
if self.auto_id:
|
|
fields.append(
|
|
FieldSchema(
|
|
self._primary_field, DataType.INT64, is_primary=True, auto_id=True
|
|
)
|
|
)
|
|
else:
|
|
fields.append(
|
|
FieldSchema(
|
|
self._primary_field,
|
|
DataType.VARCHAR,
|
|
is_primary=True,
|
|
auto_id=False,
|
|
max_length=65_535,
|
|
)
|
|
)
|
|
# Create the vector field, supports binary or float vectors
|
|
fields.append(
|
|
FieldSchema(self._vector_field, infer_dtype_bydata(embeddings[0]), dim=dim)
|
|
)
|
|
|
|
# Create the schema for the collection
|
|
schema = CollectionSchema(
|
|
fields,
|
|
description=self.collection_description,
|
|
partition_key_field=self._partition_key_field,
|
|
)
|
|
|
|
# Create the collection
|
|
try:
|
|
self.col = Collection(
|
|
name=self.collection_name,
|
|
schema=schema,
|
|
consistency_level=self.consistency_level,
|
|
using=self.alias,
|
|
)
|
|
# Set the collection properties if they exist
|
|
if self.collection_properties is not None:
|
|
self.col.set_properties(self.collection_properties)
|
|
except MilvusException as e:
|
|
logger.error(
|
|
"Failed to create collection: %s error: %s", self.collection_name, e
|
|
)
|
|
raise e
|
|
|
|
def _extract_fields(self) -> None:
|
|
"""Grab the existing fields from the Collection"""
|
|
from pymilvus import Collection
|
|
|
|
if isinstance(self.col, Collection):
|
|
schema = self.col.schema
|
|
for x in schema.fields:
|
|
self.fields.append(x.name)
|
|
|
|
def _get_index(self) -> Optional[dict[str, Any]]:
|
|
"""Return the vector index information if it exists"""
|
|
from pymilvus import Collection
|
|
|
|
if isinstance(self.col, Collection):
|
|
for x in self.col.indexes:
|
|
if x.field_name == self._vector_field:
|
|
return x.to_dict()
|
|
return None
|
|
|
|
def _create_index(self) -> None:
|
|
"""Create a index on the collection"""
|
|
from pymilvus import Collection, MilvusException
|
|
|
|
if isinstance(self.col, Collection) and self._get_index() is None:
|
|
try:
|
|
# If no index params, use a default HNSW based one
|
|
if self.index_params is None:
|
|
self.index_params = {
|
|
"metric_type": "L2",
|
|
"index_type": "HNSW",
|
|
"params": {"M": 8, "efConstruction": 64},
|
|
}
|
|
|
|
try:
|
|
self.col.create_index(
|
|
self._vector_field,
|
|
index_params=self.index_params,
|
|
using=self.alias,
|
|
)
|
|
|
|
# If default did not work, most likely on Zilliz Cloud
|
|
except MilvusException:
|
|
# Use AUTOINDEX based index
|
|
self.index_params = {
|
|
"metric_type": "L2",
|
|
"index_type": "AUTOINDEX",
|
|
"params": {},
|
|
}
|
|
self.col.create_index(
|
|
self._vector_field,
|
|
index_params=self.index_params,
|
|
using=self.alias,
|
|
)
|
|
logger.debug(
|
|
"Successfully created an index on collection: %s",
|
|
self.collection_name,
|
|
)
|
|
|
|
except MilvusException as e:
|
|
logger.error(
|
|
"Failed to create an index on collection: %s", self.collection_name
|
|
)
|
|
raise e
|
|
|
|
def _create_search_params(self) -> None:
|
|
"""Generate search params based on the current index type"""
|
|
from pymilvus import Collection
|
|
|
|
if isinstance(self.col, Collection) and self.search_params is None:
|
|
index = self._get_index()
|
|
if index is not None:
|
|
index_type: str = index["index_param"]["index_type"]
|
|
metric_type: str = index["index_param"]["metric_type"]
|
|
self.search_params = self.default_search_params[index_type]
|
|
self.search_params["metric_type"] = metric_type
|
|
|
|
def _load(
|
|
self,
|
|
partition_names: Optional[list] = None,
|
|
replica_number: int = 1,
|
|
timeout: Optional[float] = None,
|
|
) -> None:
|
|
"""Load the collection if available."""
|
|
from pymilvus import Collection, utility
|
|
from pymilvus.client.types import LoadState
|
|
|
|
if (
|
|
isinstance(self.col, Collection)
|
|
and self._get_index() is not None
|
|
and utility.load_state(self.collection_name, using=self.alias)
|
|
== LoadState.NotLoad
|
|
):
|
|
self.col.load(
|
|
partition_names=partition_names,
|
|
replica_number=replica_number,
|
|
timeout=timeout,
|
|
)
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
timeout: Optional[int] = None,
|
|
batch_size: int = 1000,
|
|
*,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Insert text data into Milvus.
|
|
|
|
Inserting data when the collection has not be made yet will result
|
|
in creating a new Collection. The data of the first entity decides
|
|
the schema of the new collection, the dim is extracted from the first
|
|
embedding and the columns are decided by the first metadata dict.
|
|
Metadata keys will need to be present for all inserted values. At
|
|
the moment there is no None equivalent in Milvus.
|
|
|
|
Args:
|
|
texts (Iterable[str]): The texts to embed, it is assumed
|
|
that they all fit in memory.
|
|
metadatas (Optional[List[dict]]): Metadata dicts attached to each of
|
|
the texts. Defaults to None.
|
|
should be less than 65535 bytes. Required and work when auto_id is False.
|
|
timeout (Optional[int]): Timeout for each batch insert. Defaults
|
|
to None.
|
|
batch_size (int, optional): Batch size to use for insertion.
|
|
Defaults to 1000.
|
|
ids (Optional[List[str]]): List of text ids. The length of each item
|
|
|
|
Raises:
|
|
MilvusException: Failure to add texts
|
|
|
|
Returns:
|
|
List[str]: The resulting keys for each inserted element.
|
|
"""
|
|
from pymilvus import Collection, MilvusException
|
|
|
|
texts = list(texts)
|
|
if not self.auto_id:
|
|
assert isinstance(
|
|
ids, list
|
|
), "A list of valid ids are required when auto_id is False."
|
|
assert len(set(ids)) == len(
|
|
texts
|
|
), "Different lengths of texts and unique ids are provided."
|
|
assert all(
|
|
len(x.encode()) <= 65_535 for x in ids
|
|
), "Each id should be a string less than 65535 bytes."
|
|
|
|
try:
|
|
embeddings = self.embedding_func.embed_documents(texts)
|
|
except NotImplementedError:
|
|
embeddings = [self.embedding_func.embed_query(x) for x in texts]
|
|
|
|
if len(embeddings) == 0:
|
|
logger.debug("Nothing to insert, skipping.")
|
|
return []
|
|
|
|
# If the collection hasn't been initialized yet, perform all steps to do so
|
|
if not isinstance(self.col, Collection):
|
|
kwargs = {"embeddings": embeddings, "metadatas": metadatas}
|
|
if self.partition_names:
|
|
kwargs["partition_names"] = self.partition_names
|
|
if self.replica_number:
|
|
kwargs["replica_number"] = self.replica_number
|
|
if self.timeout:
|
|
kwargs["timeout"] = self.timeout
|
|
self._init(**kwargs)
|
|
|
|
# Dict to hold all insert columns
|
|
insert_dict: dict[str, list] = {
|
|
self._text_field: texts,
|
|
self._vector_field: embeddings,
|
|
}
|
|
|
|
if not self.auto_id:
|
|
insert_dict[self._primary_field] = ids # type: ignore[assignment]
|
|
|
|
if self._metadata_field is not None:
|
|
for d in metadatas: # type: ignore[union-attr]
|
|
insert_dict.setdefault(self._metadata_field, []).append(d)
|
|
else:
|
|
# Collect the metadata into the insert dict.
|
|
if metadatas is not None:
|
|
for d in metadatas:
|
|
for key, value in d.items():
|
|
keys = (
|
|
[x for x in self.fields if x != self._primary_field]
|
|
if self.auto_id
|
|
else [x for x in self.fields]
|
|
)
|
|
if key in keys:
|
|
insert_dict.setdefault(key, []).append(value)
|
|
|
|
# Total insert count
|
|
vectors: list = insert_dict[self._vector_field]
|
|
total_count = len(vectors)
|
|
|
|
pks: list[str] = []
|
|
|
|
assert isinstance(self.col, Collection)
|
|
for i in range(0, total_count, batch_size):
|
|
# Grab end index
|
|
end = min(i + batch_size, total_count)
|
|
# Convert dict to list of lists batch for insertion
|
|
insert_list = [
|
|
insert_dict[x][i:end] for x in self.fields if x in insert_dict
|
|
]
|
|
# Insert into the collection.
|
|
try:
|
|
res: Collection
|
|
res = self.col.insert(insert_list, timeout=timeout, **kwargs)
|
|
pks.extend(res.primary_keys)
|
|
except MilvusException as e:
|
|
logger.error(
|
|
"Failed to insert batch starting at entity: %s/%s", i, total_count
|
|
)
|
|
raise e
|
|
self.col.flush()
|
|
return pks
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
param: Optional[dict] = None,
|
|
expr: Optional[str] = None,
|
|
timeout: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Perform a similarity search against the query string.
|
|
|
|
Args:
|
|
query (str): The text to search.
|
|
k (int, optional): How many results to return. Defaults to 4.
|
|
param (dict, optional): The search params for the index type.
|
|
Defaults to None.
|
|
expr (str, optional): Filtering expression. Defaults to None.
|
|
timeout (int, optional): How long to wait before timeout error.
|
|
Defaults to None.
|
|
kwargs: Collection.search() keyword arguments.
|
|
|
|
Returns:
|
|
List[Document]: Document results for search.
|
|
"""
|
|
if self.col is None:
|
|
logger.debug("No existing collection to search.")
|
|
return []
|
|
res = self.similarity_search_with_score(
|
|
query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs
|
|
)
|
|
return [doc for doc, _ in res]
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
param: Optional[dict] = None,
|
|
expr: Optional[str] = None,
|
|
timeout: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Perform a similarity search against the query string.
|
|
|
|
Args:
|
|
embedding (List[float]): The embedding vector to search.
|
|
k (int, optional): How many results to return. Defaults to 4.
|
|
param (dict, optional): The search params for the index type.
|
|
Defaults to None.
|
|
expr (str, optional): Filtering expression. Defaults to None.
|
|
timeout (int, optional): How long to wait before timeout error.
|
|
Defaults to None.
|
|
kwargs: Collection.search() keyword arguments.
|
|
|
|
Returns:
|
|
List[Document]: Document results for search.
|
|
"""
|
|
if self.col is None:
|
|
logger.debug("No existing collection to search.")
|
|
return []
|
|
res = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
|
|
)
|
|
return [doc for doc, _ in res]
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
param: Optional[dict] = None,
|
|
expr: Optional[str] = None,
|
|
timeout: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Perform a search on a query string and return results with score.
|
|
|
|
For more information about the search parameters, take a look at the pymilvus
|
|
documentation found here:
|
|
https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
|
|
|
|
Args:
|
|
query (str): The text being searched.
|
|
k (int, optional): The amount of results to return. Defaults to 4.
|
|
param (dict): The search params for the specified index.
|
|
Defaults to None.
|
|
expr (str, optional): Filtering expression. Defaults to None.
|
|
timeout (int, optional): How long to wait before timeout error.
|
|
Defaults to None.
|
|
kwargs: Collection.search() keyword arguments.
|
|
|
|
Returns:
|
|
List[float], List[Tuple[Document, any, any]]:
|
|
"""
|
|
if self.col is None:
|
|
logger.debug("No existing collection to search.")
|
|
return []
|
|
|
|
# Embed the query text.
|
|
embedding = self.embedding_func.embed_query(query)
|
|
|
|
res = self.similarity_search_with_score_by_vector(
|
|
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
|
|
)
|
|
return res
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
param: Optional[dict] = None,
|
|
expr: Optional[str] = None,
|
|
timeout: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Perform a search on a query string and return results with score.
|
|
|
|
For more information about the search parameters, take a look at the pymilvus
|
|
documentation found here:
|
|
https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
|
|
|
|
Args:
|
|
embedding (List[float]): The embedding vector being searched.
|
|
k (int, optional): The amount of results to return. Defaults to 4.
|
|
param (dict): The search params for the specified index.
|
|
Defaults to None.
|
|
expr (str, optional): Filtering expression. Defaults to None.
|
|
timeout (int, optional): How long to wait before timeout error.
|
|
Defaults to None.
|
|
kwargs: Collection.search() keyword arguments.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: Result doc and score.
|
|
"""
|
|
if self.col is None:
|
|
logger.debug("No existing collection to search.")
|
|
return []
|
|
|
|
if param is None:
|
|
param = self.search_params
|
|
|
|
# Determine result metadata fields with PK.
|
|
output_fields = self.fields[:]
|
|
output_fields.remove(self._vector_field)
|
|
|
|
# Perform the search.
|
|
res = self.col.search(
|
|
data=[embedding],
|
|
anns_field=self._vector_field,
|
|
param=param,
|
|
limit=k,
|
|
expr=expr,
|
|
output_fields=output_fields,
|
|
timeout=timeout,
|
|
**kwargs,
|
|
)
|
|
# Organize results.
|
|
ret = []
|
|
for result in res[0]:
|
|
data = {x: result.entity.get(x) for x in output_fields}
|
|
doc = self._parse_document(data)
|
|
pair = (doc, result.score)
|
|
ret.append(pair)
|
|
|
|
return ret
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
param: Optional[dict] = None,
|
|
expr: Optional[str] = None,
|
|
timeout: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Perform a search and return results that are reordered by MMR.
|
|
|
|
Args:
|
|
query (str): The text being searched.
|
|
k (int, optional): How many results to give. Defaults to 4.
|
|
fetch_k (int, optional): Total results to select k from.
|
|
Defaults to 20.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5
|
|
param (dict, optional): The search params for the specified index.
|
|
Defaults to None.
|
|
expr (str, optional): Filtering expression. Defaults to None.
|
|
timeout (int, optional): How long to wait before timeout error.
|
|
Defaults to None.
|
|
kwargs: Collection.search() keyword arguments.
|
|
|
|
|
|
Returns:
|
|
List[Document]: Document results for search.
|
|
"""
|
|
if self.col is None:
|
|
logger.debug("No existing collection to search.")
|
|
return []
|
|
|
|
embedding = self.embedding_func.embed_query(query)
|
|
|
|
return self.max_marginal_relevance_search_by_vector(
|
|
embedding=embedding,
|
|
k=k,
|
|
fetch_k=fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
param=param,
|
|
expr=expr,
|
|
timeout=timeout,
|
|
**kwargs,
|
|
)
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
self,
|
|
embedding: list[float],
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
param: Optional[dict] = None,
|
|
expr: Optional[str] = None,
|
|
timeout: Optional[int] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Perform a search and return results that are reordered by MMR.
|
|
|
|
Args:
|
|
embedding (str): The embedding vector being searched.
|
|
k (int, optional): How many results to give. Defaults to 4.
|
|
fetch_k (int, optional): Total results to select k from.
|
|
Defaults to 20.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5
|
|
param (dict, optional): The search params for the specified index.
|
|
Defaults to None.
|
|
expr (str, optional): Filtering expression. Defaults to None.
|
|
timeout (int, optional): How long to wait before timeout error.
|
|
Defaults to None.
|
|
kwargs: Collection.search() keyword arguments.
|
|
|
|
Returns:
|
|
List[Document]: Document results for search.
|
|
"""
|
|
if self.col is None:
|
|
logger.debug("No existing collection to search.")
|
|
return []
|
|
|
|
if param is None:
|
|
param = self.search_params
|
|
|
|
# Determine result metadata fields.
|
|
output_fields = self.fields[:]
|
|
output_fields.remove(self._vector_field)
|
|
|
|
# Perform the search.
|
|
res = self.col.search(
|
|
data=[embedding],
|
|
anns_field=self._vector_field,
|
|
param=param,
|
|
limit=fetch_k,
|
|
expr=expr,
|
|
output_fields=output_fields,
|
|
timeout=timeout,
|
|
**kwargs,
|
|
)
|
|
# Organize results.
|
|
ids = []
|
|
documents = []
|
|
scores = []
|
|
for result in res[0]:
|
|
data = {x: result.entity.get(x) for x in output_fields}
|
|
doc = self._parse_document(data)
|
|
documents.append(doc)
|
|
scores.append(result.score)
|
|
ids.append(result.id)
|
|
|
|
vectors = self.col.query(
|
|
expr=f"{self._primary_field} in {ids}",
|
|
output_fields=[self._primary_field, self._vector_field],
|
|
timeout=timeout,
|
|
)
|
|
# Reorganize the results from query to match search order.
|
|
vectors = {x[self._primary_field]: x[self._vector_field] for x in vectors}
|
|
|
|
ordered_result_embeddings = [vectors[x] for x in ids]
|
|
|
|
# Get the new order of results.
|
|
new_ordering = maximal_marginal_relevance(
|
|
np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult
|
|
)
|
|
|
|
# Reorder the values and return.
|
|
ret = []
|
|
for x in new_ordering:
|
|
# Function can return -1 index
|
|
if x == -1:
|
|
break
|
|
else:
|
|
ret.append(documents[x])
|
|
return ret
|
|
|
|
def delete( # type: ignore[no-untyped-def]
|
|
self, ids: Optional[List[str]] = None, expr: Optional[str] = None, **kwargs: str
|
|
):
|
|
"""Delete by vector ID or boolean expression.
|
|
Refer to [Milvus documentation](https://milvus.io/docs/delete_data.md)
|
|
for notes and examples of expressions.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
expr: Boolean expression that specifies the entities to delete.
|
|
kwargs: Other parameters in Milvus delete api.
|
|
"""
|
|
if isinstance(ids, list) and len(ids) > 0:
|
|
expr = f"{self._primary_field} in {ids}"
|
|
if expr is not None:
|
|
logger.warning(
|
|
"Both ids and expr are provided. " "Ignore expr and delete by ids."
|
|
)
|
|
else:
|
|
assert isinstance(
|
|
expr, str
|
|
), "Either ids list or expr string must be provided."
|
|
return self.col.delete(expr=expr, **kwargs) # type: ignore[union-attr]
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
collection_name: str = "LangChainCollection",
|
|
connection_args: dict[str, Any] = DEFAULT_MILVUS_CONNECTION,
|
|
consistency_level: str = "Session",
|
|
index_params: Optional[dict] = None,
|
|
search_params: Optional[dict] = None,
|
|
drop_old: bool = False,
|
|
*,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> Milvus:
|
|
"""Create a Milvus collection, indexes it with HNSW, and insert data.
|
|
|
|
Args:
|
|
texts (List[str]): Text data.
|
|
embedding (Embeddings): Embedding function.
|
|
metadatas (Optional[List[dict]]): Metadata for each text if it exists.
|
|
Defaults to None.
|
|
collection_name (str, optional): Collection name to use. Defaults to
|
|
"LangChainCollection".
|
|
connection_args (dict[str, Any], optional): Connection args to use. Defaults
|
|
to DEFAULT_MILVUS_CONNECTION.
|
|
consistency_level (str, optional): Which consistency level to use. Defaults
|
|
to "Session".
|
|
index_params (Optional[dict], optional): Which index_params to use. Defaults
|
|
to None.
|
|
search_params (Optional[dict], optional): Which search params to use.
|
|
Defaults to None.
|
|
drop_old (Optional[bool], optional): Whether to drop the collection with
|
|
that name if it exists. Defaults to False.
|
|
ids (Optional[List[str]]): List of text ids. Defaults to None.
|
|
|
|
Returns:
|
|
Milvus: Milvus Vector Store
|
|
"""
|
|
if isinstance(ids, list) and len(ids) > 0:
|
|
auto_id = False
|
|
else:
|
|
auto_id = True
|
|
|
|
vector_db = cls(
|
|
embedding_function=embedding,
|
|
collection_name=collection_name,
|
|
connection_args=connection_args,
|
|
consistency_level=consistency_level,
|
|
index_params=index_params,
|
|
search_params=search_params,
|
|
drop_old=drop_old,
|
|
auto_id=auto_id,
|
|
**kwargs,
|
|
)
|
|
vector_db.add_texts(texts=texts, metadatas=metadatas, ids=ids)
|
|
return vector_db
|
|
|
|
def _parse_document(self, data: dict) -> Document:
|
|
return Document(
|
|
page_content=data.pop(self._text_field),
|
|
metadata=data.pop(self._metadata_field) if self._metadata_field else data,
|
|
)
|
|
|
|
def get_pks(self, expr: str, **kwargs: Any) -> List[int] | None:
|
|
"""Get primary keys with expression
|
|
|
|
Args:
|
|
expr: Expression - E.g: "id in [1, 2]", or "title LIKE 'Abc%'"
|
|
|
|
Returns:
|
|
List[int]: List of IDs (Primary Keys)
|
|
"""
|
|
|
|
from pymilvus import MilvusException
|
|
|
|
if self.col is None:
|
|
logger.debug("No existing collection to get pk.")
|
|
return None
|
|
|
|
try:
|
|
query_result = self.col.query(
|
|
expr=expr, output_fields=[self._primary_field]
|
|
)
|
|
except MilvusException as exc:
|
|
logger.error("Failed to get ids: %s error: %s", self.collection_name, exc)
|
|
raise exc
|
|
pks = [item.get(self._primary_field) for item in query_result]
|
|
return pks
|
|
|
|
def upsert(
|
|
self,
|
|
ids: Optional[List[str]] = None,
|
|
documents: List[Document] | None = None,
|
|
**kwargs: Any,
|
|
) -> List[str] | None:
|
|
"""Update/Insert documents to the vectorstore.
|
|
|
|
Args:
|
|
ids: IDs to update - Let's call get_pks to get ids with expression \n
|
|
documents (List[Document]): Documents to add to the vectorstore.
|
|
|
|
Returns:
|
|
List[str]: IDs of the added texts.
|
|
"""
|
|
|
|
from pymilvus import MilvusException
|
|
|
|
if documents is None or len(documents) == 0:
|
|
logger.debug("No documents to upsert.")
|
|
return None
|
|
|
|
if ids is not None and len(ids):
|
|
try:
|
|
self.delete(ids=ids)
|
|
except MilvusException:
|
|
pass
|
|
try:
|
|
return self.add_documents(documents=documents)
|
|
except MilvusException as exc:
|
|
logger.error(
|
|
"Failed to upsert entities: %s error: %s", self.collection_name, exc
|
|
)
|
|
raise exc
|