mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
adabdfdfc7
- Description: * Baidu AI Cloud's [Qianfan Platform](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html) is an all-in-one platform for large model development and service deployment, catering to enterprise developers in China. Qianfan Platform offers a wide range of resources, including the Wenxin Yiyan model (ERNIE-Bot) and various third-party open-source models. - Issue: none - Dependencies: * qianfan - Tag maintainer: @baskaryan - Twitter handle: --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
125 lines
3.8 KiB
Plaintext
125 lines
3.8 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Baidu Qianfan\n",
|
||
"\n",
|
||
"Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n",
|
||
"\n",
|
||
"Basically, those model are split into the following type:\n",
|
||
"\n",
|
||
"- Embedding\n",
|
||
"- Chat\n",
|
||
"- Completion\n",
|
||
"\n",
|
||
"In this notebook, we will introduce how to use langchain with [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html) mainly in `Embedding` corresponding\n",
|
||
" to the package `langchain/embeddings` in langchain:\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"## API Initialization\n",
|
||
"\n",
|
||
"To use the LLM services based on Baidu Qianfan, you have to initialize these parameters:\n",
|
||
"\n",
|
||
"You could either choose to init the AK,SK in enviroment variables or init params:\n",
|
||
"\n",
|
||
"```base\n",
|
||
"export QIANFAN_AK=XXX\n",
|
||
"export QIANFAN_SK=XXX\n",
|
||
"```\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"\"\"\"For basic init and call\"\"\"\n",
|
||
"from langchain.embeddings.baidu_qianfan_endpoint import QianfanEmbeddingsEndpoint \n",
|
||
"\n",
|
||
"import os\n",
|
||
"os.environ[\"QIANFAN_AK\"] = \"xx\"\n",
|
||
"os.environ[\"QIANFAN_SK\"] = \"xx\"\n",
|
||
"\n",
|
||
"embed = QianfanEmbeddingsEndpoint(qianfan_ak='xxx', \n",
|
||
" qianfan_sk='xxx')\n",
|
||
"res = embed.embed_documents([\"hi\", \"world\"])\n",
|
||
"\n",
|
||
"import asyncio\n",
|
||
"\n",
|
||
"async def aioEmbed():\n",
|
||
" res = await embed.aembed_query(\"qianfan\")\n",
|
||
" print(res)\n",
|
||
"await aioEmbed()\n",
|
||
"\n",
|
||
"import asyncio\n",
|
||
"async def aioEmbedDocs():\n",
|
||
" res = await embed.aembed_documents([\"hi\", \"world\"])\n",
|
||
" for r in res:\n",
|
||
" print(\"\", r[:8])\n",
|
||
"await aioEmbedDocs()\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Use different models in Qianfan\n",
|
||
"\n",
|
||
"In the case you want to deploy your own model based on Ernie Bot or third-party open sources model, you could follow these steps:\n",
|
||
"\n",
|
||
"- 1. (Optional, if the model are included in the default models, skip it)Deploy your model in Qianfan Console, get your own customized deploy endpoint.\n",
|
||
"- 2. Set up the field called `endpoint` in the initlization:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"embed = QianfanEmbeddingsEndpoint(qianfan_ak='xxx', \n",
|
||
" qianfan_sk='xxx',\n",
|
||
" model=\"bge_large_zh\",\n",
|
||
" endpoint=\"bge_large_zh\")\n",
|
||
"\n",
|
||
"res = embed.embed_documents([\"hi\", \"world\"])"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "base",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.11.4"
|
||
},
|
||
"orig_nbformat": 4,
|
||
"vscode": {
|
||
"interpreter": {
|
||
"hash": "6fa70026b407ae751a5c9e6bd7f7d482379da8ad616f98512780b705c84ee157"
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|