You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
langchain/libs/community/langchain_community/vectorstores/dingo.py

383 lines
13 KiB
Python

from __future__ import annotations
import logging
import uuid
from typing import Any, Iterable, List, Optional, Tuple
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger(__name__)
class Dingo(VectorStore):
"""`Dingo` vector store.
To use, you should have the ``dingodb`` python package installed.
Example:
.. code-block:: python
from langchain_community.vectorstores import Dingo
from langchain_community.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
dingo = Dingo(embeddings, "text")
"""
def __init__(
self,
embedding: Embeddings,
text_key: str,
*,
client: Any = None,
index_name: Optional[str] = None,
dimension: int = 1024,
host: Optional[List[str]] = None,
user: str = "root",
password: str = "123123",
self_id: bool = False,
):
"""Initialize with Dingo client."""
try:
import dingodb
except ImportError:
raise ImportError(
"Could not import dingo python package. "
"Please install it with `pip install dingodb."
)
host = host if host is not None else ["172.20.31.10:13000"]
# collection
if client is not None:
dingo_client = client
else:
try:
# connect to dingo db
dingo_client = dingodb.DingoDB(user, password, host)
except ValueError as e:
raise ValueError(f"Dingo failed to connect: {e}")
self._text_key = text_key
self._client = dingo_client
if (
index_name is not None
and index_name not in dingo_client.get_index()
and index_name.upper() not in dingo_client.get_index()
):
if self_id is True:
dingo_client.create_index(
index_name, dimension=dimension, auto_id=False
)
else:
dingo_client.create_index(index_name, dimension=dimension)
self._index_name = index_name
self._embedding = embedding
@property
def embeddings(self) -> Optional[Embeddings]:
return self._embedding
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
text_key: str = "text",
batch_size: int = 500,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
# Embed and create the documents
ids = ids or [str(uuid.uuid4().int)[:13] for _ in texts]
metadatas_list = []
texts = list(texts)
embeds = self._embedding.embed_documents(texts)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
metadata[self._text_key] = text
metadatas_list.append(metadata)
# upsert to Dingo
for i in range(0, len(list(texts)), batch_size):
j = i + batch_size
add_res = self._client.vector_add(
self._index_name, metadatas_list[i:j], embeds[i:j], ids[i:j]
)
if not add_res:
raise Exception("vector add fail")
return ids
def similarity_search(
self,
query: str,
k: int = 4,
search_params: Optional[dict] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Return Dingo documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
search_params: Dictionary of argument(s) to filter on metadata
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_scores = self.similarity_search_with_score(
query, k=k, search_params=search_params, **kwargs
)
return [doc for doc, _ in docs_and_scores]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
search_params: Optional[dict] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return Dingo documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
search_params: Dictionary of argument(s) to filter on metadata
Returns:
List of Documents most similar to the query and score for each
"""
docs = []
query_obj = self._embedding.embed_query(query)
results = self._client.vector_search(
self._index_name, xq=query_obj, top_k=k, search_params=search_params
)
if not results:
return []
for res in results[0]["vectorWithDistances"]:
score = res["distance"]
if (
"score_threshold" in kwargs
and kwargs.get("score_threshold") is not None
):
if score > kwargs.get("score_threshold"):
continue
metadatas = res["scalarData"]
id = res["id"]
text = metadatas[self._text_key]["fields"][0]["data"]
metadata = {"id": id, "text": text, "score": score}
for meta_key in metadatas.keys():
metadata[meta_key] = metadatas[meta_key]["fields"][0]["data"]
docs.append((Document(page_content=text, metadata=metadata), score))
return docs
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
search_params: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
results = self._client.vector_search(
self._index_name, [embedding], search_params=search_params, top_k=k
)
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32),
[
item["vector"]["floatValues"]
for item in results[0]["vectorWithDistances"]
],
k=k,
lambda_mult=lambda_mult,
)
selected = []
for i in mmr_selected:
meta_data = {}
for k, v in results[0]["vectorWithDistances"][i]["scalarData"].items():
meta_data.update({str(k): v["fields"][0]["data"]})
selected.append(meta_data)
return [
Document(page_content=metadata.pop(self._text_key), metadata=metadata)
for metadata in selected
]
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
search_params: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self._embedding.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult, search_params
)
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
text_key: str = "text",
index_name: Optional[str] = None,
dimension: int = 1024,
client: Any = None,
host: List[str] = ["172.20.31.10:13000"],
user: str = "root",
password: str = "123123",
batch_size: int = 500,
**kwargs: Any,
) -> Dingo:
"""Construct Dingo wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Dingo index
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain_community.vectorstores import Dingo
from langchain_community.embeddings import OpenAIEmbeddings
import dingodb
sss
embeddings = OpenAIEmbeddings()
dingo = Dingo.from_texts(
texts,
embeddings,
index_name="langchain-demo"
)
"""
try:
import dingodb
except ImportError:
raise ImportError(
"Could not import dingo python package. "
"Please install it with `pip install dingodb`."
)
if client is not None:
dingo_client = client
else:
try:
# connect to dingo db
dingo_client = dingodb.DingoDB(user, password, host)
except ValueError as e:
raise ValueError(f"Dingo failed to connect: {e}")
if kwargs is not None and kwargs.get("self_id") is True:
if (
index_name is not None
and index_name not in dingo_client.get_index()
and index_name.upper() not in dingo_client.get_index()
):
dingo_client.create_index(
index_name, dimension=dimension, auto_id=False
)
else:
if (
index_name is not None
and index_name not in dingo_client.get_index()
and index_name.upper() not in dingo_client.get_index()
):
dingo_client.create_index(index_name, dimension=dimension)
# Embed and create the documents
ids = ids or [str(uuid.uuid4().int)[:13] for _ in texts]
metadatas_list = []
texts = list(texts)
embeds = embedding.embed_documents(texts)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
metadata[text_key] = text
metadatas_list.append(metadata)
# upsert to Dingo
for i in range(0, len(list(texts)), batch_size):
j = i + batch_size
add_res = dingo_client.vector_add(
index_name, metadatas_list[i:j], embeds[i:j], ids[i:j]
)
if not add_res:
raise Exception("vector add fail")
return cls(embedding, text_key, client=dingo_client, index_name=index_name)
def delete(
self,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> Any:
"""Delete by vector IDs or filter.
Args:
ids: List of ids to delete.
"""
if ids is None:
raise ValueError("No ids provided to delete.")
return self._client.vector_delete(self._index_name, ids=ids)