langchain/libs/community/langchain_community/vectorstores/cassandra.py
Stefano Lottini 328d0c99f2
community[minor]: Add support for metadata indexing policy in Cassandra vector store (#22548)
This PR adds a constructor `metadata_indexing` parameter to the
Cassandra vector store to allow optional fine-tuning of which fields of
the metadata are to be indexed.

This is a feature supported by the underlying CassIO library. Indexing
mode of "all", "none" or deny- and allow-list based choices are
available.

The rationale is, in some cases it's advisable to programmatically
exclude some portions of the metadata from the index if one knows in
advance they won't ever be used at search-time. this keeps the index
more lightweight and performant and avoids limitations on the length of
_indexed_ strings.

I added a integration test of the feature. I also added the possibility
of running the integration test with Cassandra on an arbitrary IP
address (e.g. Dockerized), via
`CASSANDRA_CONTACT_POINTS=10.1.1.5,10.1.1.6 poetry run pytest [...]` or
similar.

While I was at it, I added a line to the `.gitignore` since the mypy
_test_ cache was not ignored yet.

My X (Twitter) handle: @rsprrs.
2024-06-05 11:23:26 -04:00

1170 lines
42 KiB
Python

from __future__ import annotations
import asyncio
import typing
import uuid
from typing import (
Any,
Awaitable,
Callable,
Dict,
Iterable,
List,
Optional,
Tuple,
Type,
TypeVar,
Union,
)
import numpy as np
if typing.TYPE_CHECKING:
from cassandra.cluster import Session
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
from langchain_community.utilities.cassandra import SetupMode
from langchain_community.vectorstores.utils import maximal_marginal_relevance
CVST = TypeVar("CVST", bound="Cassandra")
class Cassandra(VectorStore):
_embedding_dimension: Union[int, None]
def _get_embedding_dimension(self) -> int:
if self._embedding_dimension is None:
self._embedding_dimension = len(
self.embedding.embed_query("This is a sample sentence.")
)
return self._embedding_dimension
async def _aget_embedding_dimension(self) -> int:
if self._embedding_dimension is None:
self._embedding_dimension = len(
await self.embedding.aembed_query("This is a sample sentence.")
)
return self._embedding_dimension
def __init__(
self,
embedding: Embeddings,
session: Optional[Session] = None,
keyspace: Optional[str] = None,
table_name: str = "",
ttl_seconds: Optional[int] = None,
*,
body_index_options: Optional[List[Tuple[str, Any]]] = None,
setup_mode: SetupMode = SetupMode.SYNC,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
) -> None:
"""Apache Cassandra(R) for vector-store workloads.
To use it, you need a recent installation of the `cassio` library
and a Cassandra cluster / Astra DB instance supporting vector capabilities.
Visit the cassio.org website for extensive quickstarts and code examples.
Example:
.. code-block:: python
from langchain_community.vectorstores import Cassandra
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
session = ... # create your Cassandra session object
keyspace = 'my_keyspace' # the keyspace should exist already
table_name = 'my_vector_store'
vectorstore = Cassandra(embeddings, session, keyspace, table_name)
Args:
embedding: Embedding function to use.
session: Cassandra driver session. If not provided, it is resolved from
cassio.
keyspace: Cassandra keyspace. If not provided, it is resolved from cassio.
table_name: Cassandra table (required).
ttl_seconds: Optional time-to-live for the added texts.
body_index_options: Optional options used to create the body index.
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
setup_mode: mode used to create the Cassandra table (SYNC,
ASYNC or OFF).
metadata_indexing: Optional specification of a metadata indexing policy,
i.e. to fine-tune which of the metadata fields are indexed.
It can be a string ("all" or "none"), or a 2-tuple. The following
means that all fields except 'f1', 'f2' ... are NOT indexed:
metadata_indexing=("allowlist", ["f1", "f2", ...])
The following means all fields EXCEPT 'g1', 'g2', ... are indexed:
metadata_indexing("denylist", ["g1", "g2", ...])
The default is to index every metadata field.
Note: if you plan to have massive unique text metadata entries,
consider not indexing them for performance
(and to overcome max-length limitations).
"""
try:
from cassio.table import MetadataVectorCassandraTable
except (ImportError, ModuleNotFoundError):
raise ImportError(
"Could not import cassio python package. "
"Please install it with `pip install cassio`."
)
if not table_name:
raise ValueError("Missing required parameter 'table_name'.")
self.embedding = embedding
self.session = session
self.keyspace = keyspace
self.table_name = table_name
self.ttl_seconds = ttl_seconds
#
self._embedding_dimension = None
#
kwargs: Dict[str, Any] = {}
if body_index_options is not None:
kwargs["body_index_options"] = body_index_options
if setup_mode == SetupMode.ASYNC:
kwargs["async_setup"] = True
embedding_dimension: Union[int, Awaitable[int], None] = None
if setup_mode == SetupMode.ASYNC:
embedding_dimension = self._aget_embedding_dimension()
elif setup_mode == SetupMode.SYNC:
embedding_dimension = self._get_embedding_dimension()
self.table = MetadataVectorCassandraTable(
session=session,
keyspace=keyspace,
table=table_name,
vector_dimension=embedding_dimension,
metadata_indexing=metadata_indexing,
primary_key_type="TEXT",
skip_provisioning=setup_mode == SetupMode.OFF,
**kwargs,
)
@property
def embeddings(self) -> Embeddings:
return self.embedding
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""
The underlying VectorTable already returns a "score proper",
i.e. one in [0, 1] where higher means more *similar*,
so here the final score transformation is not reversing the interval:
"""
return lambda score: score
def delete_collection(self) -> None:
"""
Just an alias for `clear`
(to better align with other VectorStore implementations).
"""
self.clear()
async def adelete_collection(self) -> None:
"""
Just an alias for `aclear`
(to better align with other VectorStore implementations).
"""
await self.aclear()
def clear(self) -> None:
"""Empty the table."""
self.table.clear()
async def aclear(self) -> None:
"""Empty the table."""
await self.table.aclear()
def delete_by_document_id(self, document_id: str) -> None:
"""Delete by document ID.
Args:
document_id: the document ID to delete.
"""
return self.table.delete(row_id=document_id)
async def adelete_by_document_id(self, document_id: str) -> None:
"""Delete by document ID.
Args:
document_id: the document ID to delete.
"""
return await self.table.adelete(row_id=document_id)
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
"""Delete by vector IDs.
Args:
ids: List of ids to delete.
Returns:
Optional[bool]: True if deletion is successful,
False otherwise, None if not implemented.
"""
if ids is None:
raise ValueError("No ids provided to delete.")
for document_id in ids:
self.delete_by_document_id(document_id)
return True
async def adelete(
self, ids: Optional[List[str]] = None, **kwargs: Any
) -> Optional[bool]:
"""Delete by vector IDs.
Args:
ids: List of ids to delete.
Returns:
Optional[bool]: True if deletion is successful,
False otherwise, None if not implemented.
"""
if ids is None:
raise ValueError("No ids provided to delete.")
for document_id in ids:
await self.adelete_by_document_id(document_id)
return True
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
batch_size: int = 16,
ttl_seconds: Optional[int] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Texts to add to the vectorstore.
metadatas: Optional list of metadatas.
ids: Optional list of IDs.
batch_size: Number of concurrent requests to send to the server.
ttl_seconds: Optional time-to-live for the added texts.
Returns:
List[str]: List of IDs of the added texts.
"""
_texts = list(texts)
ids = ids or [uuid.uuid4().hex for _ in _texts]
metadatas = metadatas or [{}] * len(_texts)
ttl_seconds = ttl_seconds or self.ttl_seconds
embedding_vectors = self.embedding.embed_documents(_texts)
for i in range(0, len(_texts), batch_size):
batch_texts = _texts[i : i + batch_size]
batch_embedding_vectors = embedding_vectors[i : i + batch_size]
batch_ids = ids[i : i + batch_size]
batch_metadatas = metadatas[i : i + batch_size]
futures = [
self.table.put_async(
row_id=text_id,
body_blob=text,
vector=embedding_vector,
metadata=metadata or {},
ttl_seconds=ttl_seconds,
)
for text, embedding_vector, text_id, metadata in zip(
batch_texts, batch_embedding_vectors, batch_ids, batch_metadatas
)
]
for future in futures:
future.result()
return ids
async def aadd_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
concurrency: int = 16,
ttl_seconds: Optional[int] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Texts to add to the vectorstore.
metadatas: Optional list of metadatas.
ids: Optional list of IDs.
concurrency: Number of concurrent queries to the database.
Defaults to 16.
ttl_seconds: Optional time-to-live for the added texts.
Returns:
List[str]: List of IDs of the added texts.
"""
_texts = list(texts)
ids = ids or [uuid.uuid4().hex for _ in _texts]
_metadatas: List[dict] = metadatas or [{}] * len(_texts)
ttl_seconds = ttl_seconds or self.ttl_seconds
embedding_vectors = await self.embedding.aembed_documents(_texts)
sem = asyncio.Semaphore(concurrency)
async def send_concurrently(
row_id: str, text: str, embedding_vector: List[float], metadata: dict
) -> None:
async with sem:
await self.table.aput(
row_id=row_id,
body_blob=text,
vector=embedding_vector,
metadata=metadata or {},
ttl_seconds=ttl_seconds,
)
for i in range(0, len(_texts)):
tasks = [
asyncio.create_task(
send_concurrently(
ids[i], _texts[i], embedding_vectors[i], _metadatas[i]
)
)
]
await asyncio.gather(*tasks)
return ids
@staticmethod
def _search_to_documents(
hits: Iterable[Dict[str, Any]],
) -> List[Tuple[Document, float, str]]:
# We stick to 'cos' distance as it can be normalized on a 0-1 axis
# (1=most relevant), as required by this class' contract.
return [
(
Document(
page_content=hit["body_blob"],
metadata=hit["metadata"],
),
0.5 + 0.5 * hit["distance"],
hit["row_id"],
)
for hit in hits
]
# id-returning search facilities
def similarity_search_with_score_id_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float, str]]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score, id), the most similar to the query vector.
"""
kwargs: Dict[str, Any] = {}
if filter is not None:
kwargs["metadata"] = filter
if body_search is not None:
kwargs["body_search"] = body_search
hits = self.table.metric_ann_search(
vector=embedding,
n=k,
metric="cos",
**kwargs,
)
return self._search_to_documents(hits)
async def asimilarity_search_with_score_id_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float, str]]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score, id), the most similar to the query vector.
"""
kwargs: Dict[str, Any] = {}
if filter is not None:
kwargs["metadata"] = filter
if body_search is not None:
kwargs["body_search"] = body_search
hits = await self.table.ametric_ann_search(
vector=embedding,
n=k,
metric="cos",
**kwargs,
)
return self._search_to_documents(hits)
def similarity_search_with_score_id(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float, str]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score, id), the most similar to the query vector.
"""
embedding_vector = self.embedding.embed_query(query)
return self.similarity_search_with_score_id_by_vector(
embedding=embedding_vector,
k=k,
filter=filter,
body_search=body_search,
)
async def asimilarity_search_with_score_id(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float, str]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score, id), the most similar to the query vector.
"""
embedding_vector = await self.embedding.aembed_query(query)
return await self.asimilarity_search_with_score_id_by_vector(
embedding=embedding_vector,
k=k,
filter=filter,
body_search=body_search,
)
# id-unaware search facilities
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score), the most similar to the query vector.
"""
return [
(doc, score)
for (doc, score, docId) in self.similarity_search_with_score_id_by_vector(
embedding=embedding,
k=k,
filter=filter,
body_search=body_search,
)
]
async def asimilarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score), the most similar to the query vector.
"""
return [
(doc, score)
for (
doc,
score,
_,
) in await self.asimilarity_search_with_score_id_by_vector(
embedding=embedding,
k=k,
filter=filter,
body_search=body_search,
)
]
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Document, the most similar to the query vector.
"""
embedding_vector = self.embedding.embed_query(query)
return self.similarity_search_by_vector(
embedding_vector,
k,
filter=filter,
body_search=body_search,
)
async def asimilarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Document, the most similar to the query vector.
"""
embedding_vector = await self.embedding.aembed_query(query)
return await self.asimilarity_search_by_vector(
embedding_vector,
k,
filter=filter,
body_search=body_search,
)
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Document, the most similar to the query vector.
"""
return [
doc
for doc, _ in self.similarity_search_with_score_by_vector(
embedding,
k,
filter=filter,
body_search=body_search,
)
]
async def asimilarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Document, the most similar to the query vector.
"""
return [
doc
for doc, _ in await self.asimilarity_search_with_score_by_vector(
embedding,
k,
filter=filter,
body_search=body_search,
)
]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score), the most similar to the query vector.
"""
embedding_vector = self.embedding.embed_query(query)
return self.similarity_search_with_score_by_vector(
embedding_vector,
k,
filter=filter,
body_search=body_search,
)
async def asimilarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of (Document, score), the most similar to the query vector.
"""
embedding_vector = await self.embedding.aembed_query(query)
return await self.asimilarity_search_with_score_by_vector(
embedding_vector,
k,
filter=filter,
body_search=body_search,
)
@staticmethod
def _mmr_search_to_documents(
prefetch_hits: List[Dict[str, Any]],
embedding: List[float],
k: int,
lambda_mult: float,
) -> List[Document]:
# let the mmr utility pick the *indices* in the above array
mmr_chosen_indices = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32),
[pf_hit["vector"] for pf_hit in prefetch_hits],
k=k,
lambda_mult=lambda_mult,
)
mmr_hits = [
pf_hit
for pf_index, pf_hit in enumerate(prefetch_hits)
if pf_index in mmr_chosen_indices
]
return [
Document(
page_content=hit["body_blob"],
metadata=hit["metadata"],
)
for hit in mmr_hits
]
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding to maximum
diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Documents selected by maximal marginal relevance.
"""
_kwargs: Dict[str, Any] = {}
if filter is not None:
_kwargs["metadata"] = filter
if body_search is not None:
_kwargs["body_search"] = body_search
prefetch_hits = list(
self.table.metric_ann_search(
vector=embedding,
n=fetch_k,
metric="cos",
**_kwargs,
)
)
return self._mmr_search_to_documents(prefetch_hits, embedding, k, lambda_mult)
async def amax_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding to maximum
diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Documents selected by maximal marginal relevance.
"""
_kwargs: Dict[str, Any] = {}
if filter is not None:
_kwargs["metadata"] = filter
if body_search is not None:
_kwargs["body_search"] = body_search
prefetch_hits = list(
await self.table.ametric_ann_search(
vector=embedding,
n=fetch_k,
metric="cos",
**_kwargs,
)
)
return self._mmr_search_to_documents(prefetch_hits, embedding, k, lambda_mult)
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding to maximum
diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding_vector = self.embedding.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding_vector,
k,
fetch_k,
lambda_mult=lambda_mult,
filter=filter,
body_search=body_search,
)
async def amax_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
body_search: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding to maximum
diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filter on the metadata to apply.
body_search: Document textual search terms to apply.
Only supported by Astra DB at the moment.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding_vector = await self.embedding.aembed_query(query)
return await self.amax_marginal_relevance_search_by_vector(
embedding_vector,
k,
fetch_k,
lambda_mult=lambda_mult,
filter=filter,
body_search=body_search,
)
@classmethod
def from_texts(
cls: Type[CVST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
*,
session: Optional[Session] = None,
keyspace: Optional[str] = None,
table_name: str = "",
ids: Optional[List[str]] = None,
batch_size: int = 16,
ttl_seconds: Optional[int] = None,
body_index_options: Optional[List[Tuple[str, Any]]] = None,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
**kwargs: Any,
) -> CVST:
"""Create a Cassandra vectorstore from raw texts.
Args:
texts: Texts to add to the vectorstore.
embedding: Embedding function to use.
metadatas: Optional list of metadatas associated with the texts.
session: Cassandra driver session.
If not provided, it is resolved from cassio.
keyspace: Cassandra key space.
If not provided, it is resolved from cassio.
table_name: Cassandra table (required).
ids: Optional list of IDs associated with the texts.
batch_size: Number of concurrent requests to send to the server.
Defaults to 16.
ttl_seconds: Optional time-to-live for the added texts.
body_index_options: Optional options used to create the body index.
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
Returns:
a Cassandra vectorstore.
"""
store = cls(
embedding=embedding,
session=session,
keyspace=keyspace,
table_name=table_name,
ttl_seconds=ttl_seconds,
body_index_options=body_index_options,
metadata_indexing=metadata_indexing,
)
store.add_texts(
texts=texts, metadatas=metadatas, ids=ids, batch_size=batch_size
)
return store
@classmethod
async def afrom_texts(
cls: Type[CVST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
*,
session: Optional[Session] = None,
keyspace: Optional[str] = None,
table_name: str = "",
ids: Optional[List[str]] = None,
concurrency: int = 16,
ttl_seconds: Optional[int] = None,
body_index_options: Optional[List[Tuple[str, Any]]] = None,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
**kwargs: Any,
) -> CVST:
"""Create a Cassandra vectorstore from raw texts.
Args:
texts: Texts to add to the vectorstore.
embedding: Embedding function to use.
metadatas: Optional list of metadatas associated with the texts.
session: Cassandra driver session.
If not provided, it is resolved from cassio.
keyspace: Cassandra key space.
If not provided, it is resolved from cassio.
table_name: Cassandra table (required).
ids: Optional list of IDs associated with the texts.
concurrency: Number of concurrent queries to send to the database.
Defaults to 16.
ttl_seconds: Optional time-to-live for the added texts.
body_index_options: Optional options used to create the body index.
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
Returns:
a Cassandra vectorstore.
"""
store = cls(
embedding=embedding,
session=session,
keyspace=keyspace,
table_name=table_name,
ttl_seconds=ttl_seconds,
setup_mode=SetupMode.ASYNC,
body_index_options=body_index_options,
metadata_indexing=metadata_indexing,
)
await store.aadd_texts(
texts=texts, metadatas=metadatas, ids=ids, concurrency=concurrency
)
return store
@classmethod
def from_documents(
cls: Type[CVST],
documents: List[Document],
embedding: Embeddings,
*,
session: Optional[Session] = None,
keyspace: Optional[str] = None,
table_name: str = "",
ids: Optional[List[str]] = None,
batch_size: int = 16,
ttl_seconds: Optional[int] = None,
body_index_options: Optional[List[Tuple[str, Any]]] = None,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
**kwargs: Any,
) -> CVST:
"""Create a Cassandra vectorstore from a document list.
Args:
documents: Documents to add to the vectorstore.
embedding: Embedding function to use.
session: Cassandra driver session.
If not provided, it is resolved from cassio.
keyspace: Cassandra key space.
If not provided, it is resolved from cassio.
table_name: Cassandra table (required).
ids: Optional list of IDs associated with the documents.
batch_size: Number of concurrent requests to send to the server.
Defaults to 16.
ttl_seconds: Optional time-to-live for the added documents.
body_index_options: Optional options used to create the body index.
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
Returns:
a Cassandra vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
session=session,
keyspace=keyspace,
table_name=table_name,
ids=ids,
batch_size=batch_size,
ttl_seconds=ttl_seconds,
body_index_options=body_index_options,
metadata_indexing=metadata_indexing,
**kwargs,
)
@classmethod
async def afrom_documents(
cls: Type[CVST],
documents: List[Document],
embedding: Embeddings,
*,
session: Optional[Session] = None,
keyspace: Optional[str] = None,
table_name: str = "",
ids: Optional[List[str]] = None,
concurrency: int = 16,
ttl_seconds: Optional[int] = None,
body_index_options: Optional[List[Tuple[str, Any]]] = None,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
**kwargs: Any,
) -> CVST:
"""Create a Cassandra vectorstore from a document list.
Args:
documents: Documents to add to the vectorstore.
embedding: Embedding function to use.
session: Cassandra driver session.
If not provided, it is resolved from cassio.
keyspace: Cassandra key space.
If not provided, it is resolved from cassio.
table_name: Cassandra table (required).
ids: Optional list of IDs associated with the documents.
concurrency: Number of concurrent queries to send to the database.
Defaults to 16.
ttl_seconds: Optional time-to-live for the added documents.
body_index_options: Optional options used to create the body index.
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
Returns:
a Cassandra vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return await cls.afrom_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
session=session,
keyspace=keyspace,
table_name=table_name,
ids=ids,
concurrency=concurrency,
ttl_seconds=ttl_seconds,
body_index_options=body_index_options,
metadata_indexing=metadata_indexing,
**kwargs,
)
def as_retriever(
self,
search_type: str = "similarity",
search_kwargs: Optional[Dict[str, Any]] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> VectorStoreRetriever:
"""Return VectorStoreRetriever initialized from this VectorStore.
Args:
search_type: Defines the type of search that
the Retriever should perform.
Can be "similarity" (default), "mmr", or
"similarity_score_threshold".
search_kwargs: Keyword arguments to pass to the
search function. Can include things like:
k: Amount of documents to return (Default: 4)
score_threshold: Minimum relevance threshold
for similarity_score_threshold
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20)
lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
tags: List of tags associated with the retriever.
metadata: Metadata associated with the retriever.
kwargs: Other arguments passed to the VectorStoreRetriever init.
Returns:
Retriever for VectorStore.
Examples:
.. code-block:: python
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr",
search_kwargs={'k': 6, 'lambda_mult': 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
search_type="mmr",
search_kwargs={'k': 5, 'fetch_k': 50}
)
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={'score_threshold': 0.8}
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
"""
_tags = tags or [] + self._get_retriever_tags()
return VectorStoreRetriever(
vectorstore=self,
search_type=search_type,
search_kwargs=search_kwargs or {},
tags=_tags,
metadata=metadata,
**kwargs,
)