langchain/libs/community/langchain_community/utils/math.py
Joydeep Banik Roy 3796672c67
community, milvus, pinecone, qdrant, mongo: Broadcast operation failure while using simsimd beyond v3.7.7 (#22271)
- [ ] **Packages affected**: 
  - community: fix `cosine_similarity` to support simsimd beyond 3.7.7
- partners/milvus: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/mongodb: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/pinecone: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/qdrant: fix `cosine_similarity` to support simsimd beyond
3.7.7


- [ ] **Broadcast operation failure while using simsimd beyond v3.7.7**:
- **Description:** I was using simsimd 4.3.1 and the unsupported operand
type issue popped up. When I checked out the repo and ran the tests,
they failed as well (have attached a screenshot for that). Looks like it
is a variant of https://github.com/langchain-ai/langchain/issues/18022 .
Prior to 3.7.7, simd.cdist returned an ndarray but now it returns
simsimd.DistancesTensor which is ineligible for a broadcast operation
with numpy. With this change, it also remove the need to explicitly cast
`Z` to numpy array
    - **Issue:** #19905
    - **Dependencies:** No
    - **Twitter handle:** https://x.com/GetzJoydeep

<img width="1622" alt="Screenshot 2024-05-29 at 2 50 00 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/fb27b383-a9ae-4a6f-b355-6d503b72db56">

- [ ] **Considerations**: 
1. I started with community but since similar changes were there in
Milvus, MongoDB, Pinecone, and QDrant so I modified their files as well.
If touching multiple packages in one PR is not the norm, then I can
remove them from this PR and raise separate ones
2. I have run and verified that the tests work. Since, only MongoDB had
tests, I ran theirs and verified it works as well. Screenshots attached
:
<img width="1573" alt="Screenshot 2024-05-29 at 2 52 13 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/ce87d1ea-19b6-4900-9384-61fbc1a30de9">
<img width="1614" alt="Screenshot 2024-05-29 at 3 33 51 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/6ce1d679-db4c-4291-8453-01028ab2dca5">
  

I have added a test for simsimd. I feel it may not go well with the
CI/CD setup as installing simsimd is not a dependency requirement. I
have just imported simsimd to ensure simsimd cosine similarity is
invoked. However, its not a good approach. Suggestions are welcome and I
can make the required changes on the PR. Please provide guidance on the
same as I am new to the community.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-04 17:36:31 +00:00

74 lines
2.6 KiB
Python

"""Math utils."""
import logging
from typing import List, Optional, Tuple, Union
import numpy as np
logger = logging.getLogger(__name__)
Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray]
def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
"""Row-wise cosine similarity between two equal-width matrices."""
if len(X) == 0 or len(Y) == 0:
return np.array([])
X = np.array(X)
Y = np.array(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError(
f"Number of columns in X and Y must be the same. X has shape {X.shape} "
f"and Y has shape {Y.shape}."
)
try:
import simsimd as simd
X = np.array(X, dtype=np.float32)
Y = np.array(Y, dtype=np.float32)
Z = 1 - np.array(simd.cdist(X, Y, metric="cosine"))
return Z
except ImportError:
logger.debug(
"Unable to import simsimd, defaulting to NumPy implementation. If you want "
"to use simsimd please install with `pip install simsimd`."
)
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
# Ignore divide by zero errors run time warnings as those are handled below.
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity
def cosine_similarity_top_k(
X: Matrix,
Y: Matrix,
top_k: Optional[int] = 5,
score_threshold: Optional[float] = None,
) -> Tuple[List[Tuple[int, int]], List[float]]:
"""Row-wise cosine similarity with optional top-k and score threshold filtering.
Args:
X: Matrix.
Y: Matrix, same width as X.
top_k: Max number of results to return.
score_threshold: Minimum cosine similarity of results.
Returns:
Tuple of two lists. First contains two-tuples of indices (X_idx, Y_idx),
second contains corresponding cosine similarities.
"""
if len(X) == 0 or len(Y) == 0:
return [], []
score_array = cosine_similarity(X, Y)
score_threshold = score_threshold or -1.0
score_array[score_array < score_threshold] = 0
top_k = min(top_k or len(score_array), np.count_nonzero(score_array))
top_k_idxs = np.argpartition(score_array, -top_k, axis=None)[-top_k:]
top_k_idxs = top_k_idxs[np.argsort(score_array.ravel()[top_k_idxs])][::-1]
ret_idxs = np.unravel_index(top_k_idxs, score_array.shape)
scores = score_array.ravel()[top_k_idxs].tolist()
return list(zip(*ret_idxs)), scores # type: ignore