mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
afa2d85405
- Description: Added missing `from_documents` method to `KNNRetriever`, providing the ability to supply metadata to LangChain `Document`s, and to give it parity to the other retrievers, which do have `from_documents`. - Issue: None - Dependencies: None - Twitter handle: None Co-authored-by: Victor Adan <vadan@netroadshow.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
109 lines
3.2 KiB
Python
109 lines
3.2 KiB
Python
"""KNN Retriever.
|
|
Largely based on
|
|
https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import concurrent.futures
|
|
from typing import Any, Iterable, List, Optional
|
|
|
|
import numpy as np
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
|
|
|
def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray:
|
|
"""
|
|
Create an index of embeddings for a list of contexts.
|
|
|
|
Args:
|
|
contexts: List of contexts to embed.
|
|
embeddings: Embeddings model to use.
|
|
|
|
Returns:
|
|
Index of embeddings.
|
|
"""
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
return np.array(list(executor.map(embeddings.embed_query, contexts)))
|
|
|
|
|
|
class KNNRetriever(BaseRetriever):
|
|
"""`KNN` retriever."""
|
|
|
|
embeddings: Embeddings
|
|
"""Embeddings model to use."""
|
|
index: Any
|
|
"""Index of embeddings."""
|
|
texts: List[str]
|
|
"""List of texts to index."""
|
|
metadatas: Optional[List[dict]] = None
|
|
"""List of metadatas corresponding with each text."""
|
|
k: int = 4
|
|
"""Number of results to return."""
|
|
relevancy_threshold: Optional[float] = None
|
|
"""Threshold for relevancy."""
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embeddings: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> KNNRetriever:
|
|
index = create_index(texts, embeddings)
|
|
return cls(
|
|
embeddings=embeddings,
|
|
index=index,
|
|
texts=texts,
|
|
metadatas=metadatas,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls,
|
|
documents: Iterable[Document],
|
|
embeddings: Embeddings,
|
|
**kwargs: Any,
|
|
) -> KNNRetriever:
|
|
texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
|
|
return cls.from_texts(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, **kwargs
|
|
)
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
query_embeds = np.array(self.embeddings.embed_query(query))
|
|
# calc L2 norm
|
|
index_embeds = self.index / np.sqrt((self.index**2).sum(1, keepdims=True))
|
|
query_embeds = query_embeds / np.sqrt((query_embeds**2).sum())
|
|
|
|
similarities = index_embeds.dot(query_embeds)
|
|
sorted_ix = np.argsort(-similarities)
|
|
|
|
denominator = np.max(similarities) - np.min(similarities) + 1e-6
|
|
normalized_similarities = (similarities - np.min(similarities)) / denominator
|
|
|
|
top_k_results = [
|
|
Document(
|
|
page_content=self.texts[row],
|
|
metadata=self.metadatas[row] if self.metadatas else {},
|
|
)
|
|
for row in sorted_ix[0 : self.k]
|
|
if (
|
|
self.relevancy_threshold is None
|
|
or normalized_similarities[row] >= self.relevancy_threshold
|
|
)
|
|
]
|
|
return top_k_results
|