mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
c010ec8b71
- `.get_relevant_documents(query)` -> `.invoke(query)` - `.get_relevant_documents(query=query)` -> `.invoke(query)` - `.get_relevant_documents(query, callbacks=callbacks)` -> `.invoke(query, config={"callbacks": callbacks})` - `.get_relevant_documents(query, **kwargs)` -> `.invoke(query, **kwargs)` --------- Co-authored-by: Erick Friis <erick@langchain.dev>
140 lines
4.2 KiB
Python
140 lines
4.2 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
|
|
from langchain_core.retrievers import BaseRetriever
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.utilities.arcee import ArceeWrapper, DALMFilter
|
|
|
|
|
|
class ArceeRetriever(BaseRetriever):
|
|
"""Arcee Domain Adapted Language Models (DALMs) retriever.
|
|
|
|
To use, set the ``ARCEE_API_KEY`` environment variable with your Arcee API key,
|
|
or pass ``arcee_api_key`` as a named parameter.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.retrievers import ArceeRetriever
|
|
|
|
retriever = ArceeRetriever(
|
|
model="DALM-PubMed",
|
|
arcee_api_key="ARCEE-API-KEY"
|
|
)
|
|
|
|
documents = retriever.invoke("AI-driven music therapy")
|
|
"""
|
|
|
|
_client: Optional[ArceeWrapper] = None #: :meta private:
|
|
"""Arcee client."""
|
|
|
|
arcee_api_key: SecretStr
|
|
"""Arcee API Key"""
|
|
|
|
model: str
|
|
"""Arcee DALM name"""
|
|
|
|
arcee_api_url: str = "https://api.arcee.ai"
|
|
"""Arcee API URL"""
|
|
|
|
arcee_api_version: str = "v2"
|
|
"""Arcee API Version"""
|
|
|
|
arcee_app_url: str = "https://app.arcee.ai"
|
|
"""Arcee App URL"""
|
|
|
|
model_kwargs: Optional[Dict[str, Any]] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
underscore_attrs_are_private = True
|
|
|
|
def __init__(self, **data: Any) -> None:
|
|
"""Initializes private fields."""
|
|
|
|
super().__init__(**data)
|
|
|
|
self._client = ArceeWrapper(
|
|
arcee_api_key=self.arcee_api_key.get_secret_value(),
|
|
arcee_api_url=self.arcee_api_url,
|
|
arcee_api_version=self.arcee_api_version,
|
|
model_kwargs=self.model_kwargs,
|
|
model_name=self.model,
|
|
)
|
|
|
|
self._client.validate_model_training_status()
|
|
|
|
@root_validator()
|
|
def validate_environments(cls, values: Dict) -> Dict:
|
|
"""Validate Arcee environment variables."""
|
|
|
|
# validate env vars
|
|
values["arcee_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"arcee_api_key",
|
|
"ARCEE_API_KEY",
|
|
)
|
|
)
|
|
|
|
values["arcee_api_url"] = get_from_dict_or_env(
|
|
values,
|
|
"arcee_api_url",
|
|
"ARCEE_API_URL",
|
|
)
|
|
|
|
values["arcee_app_url"] = get_from_dict_or_env(
|
|
values,
|
|
"arcee_app_url",
|
|
"ARCEE_APP_URL",
|
|
)
|
|
|
|
values["arcee_api_version"] = get_from_dict_or_env(
|
|
values,
|
|
"arcee_api_version",
|
|
"ARCEE_API_VERSION",
|
|
)
|
|
|
|
# validate model kwargs
|
|
if values["model_kwargs"]:
|
|
kw = values["model_kwargs"]
|
|
|
|
# validate size
|
|
if kw.get("size") is not None:
|
|
if not kw.get("size") >= 0:
|
|
raise ValueError("`size` must not be negative.")
|
|
|
|
# validate filters
|
|
if kw.get("filters") is not None:
|
|
if not isinstance(kw.get("filters"), List):
|
|
raise ValueError("`filters` must be a list.")
|
|
for f in kw.get("filters"):
|
|
DALMFilter(**f)
|
|
|
|
return values
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Retrieve {size} contexts with your retriever for a given query
|
|
|
|
Args:
|
|
query: Query to submit to the model
|
|
size: The max number of context results to retrieve.
|
|
Defaults to 3. (Can be less if filters are provided).
|
|
filters: Filters to apply to the context dataset.
|
|
"""
|
|
|
|
try:
|
|
if not self._client:
|
|
raise ValueError("Client is not initialized.")
|
|
return self._client.retrieve(query=query, **kwargs)
|
|
except Exception as e:
|
|
raise ValueError(f"Error while retrieving documents: {e}") from e
|