mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
44a3484503
Thank you for contributing to LangChain! - **Description:** added unit tests for NotebookLoader. Linked PR: https://github.com/langchain-ai/langchain/pull/17614 - **Issue:** [#17614](https://github.com/langchain-ai/langchain/pull/17614) - **Twitter handle:** @paulodoestech - [x] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ - [x] Add tests and docs: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17. --------- Co-authored-by: lachiewalker <lachiewalker1@hotmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
137 lines
4.2 KiB
Python
137 lines
4.2 KiB
Python
"""Loads .ipynb notebook files."""
|
|
import json
|
|
from pathlib import Path
|
|
from typing import Any, List, Union
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
|
|
|
|
def concatenate_cells(
|
|
cell: dict, include_outputs: bool, max_output_length: int, traceback: bool
|
|
) -> str:
|
|
"""Combine cells information in a readable format ready to be used.
|
|
|
|
Args:
|
|
cell: A dictionary
|
|
include_outputs: Whether to include the outputs of the cell.
|
|
max_output_length: Maximum length of the output to be displayed.
|
|
traceback: Whether to return a traceback of the error.
|
|
|
|
Returns:
|
|
A string with the cell information.
|
|
|
|
"""
|
|
cell_type = cell["cell_type"]
|
|
source = cell["source"]
|
|
if include_outputs:
|
|
try:
|
|
output = cell["outputs"]
|
|
except KeyError:
|
|
pass
|
|
|
|
if include_outputs and cell_type == "code" and output:
|
|
if "ename" in output[0].keys():
|
|
error_name = output[0]["ename"]
|
|
error_value = output[0]["evalue"]
|
|
if traceback:
|
|
traceback = output[0]["traceback"]
|
|
return (
|
|
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
|
|
f" with description '{error_value}'\n"
|
|
f"and traceback '{traceback}'\n\n"
|
|
)
|
|
else:
|
|
return (
|
|
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
|
|
f"with description '{error_value}'\n\n"
|
|
)
|
|
elif output[0]["output_type"] == "stream":
|
|
output = output[0]["text"]
|
|
min_output = min(max_output_length, len(output))
|
|
return (
|
|
f"'{cell_type}' cell: '{source}'\n with "
|
|
f"output: '{output[:min_output]}'\n\n"
|
|
)
|
|
else:
|
|
return f"'{cell_type}' cell: '{source}'\n\n"
|
|
|
|
return ""
|
|
|
|
|
|
def remove_newlines(x: Any) -> Any:
|
|
"""Recursively remove newlines, no matter the data structure they are stored in."""
|
|
|
|
if isinstance(x, str):
|
|
return x.replace("\n", "")
|
|
elif isinstance(x, list):
|
|
return [remove_newlines(elem) for elem in x]
|
|
elif isinstance(x, dict):
|
|
return {k: remove_newlines(v) for (k, v) in x.items()}
|
|
else:
|
|
return x
|
|
|
|
|
|
class NotebookLoader(BaseLoader):
|
|
"""Load `Jupyter notebook` (.ipynb) files."""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Union[str, Path],
|
|
include_outputs: bool = False,
|
|
max_output_length: int = 10,
|
|
remove_newline: bool = False,
|
|
traceback: bool = False,
|
|
):
|
|
"""Initialize with a path.
|
|
|
|
Args:
|
|
path: The path to load the notebook from.
|
|
include_outputs: Whether to include the outputs of the cell.
|
|
Defaults to False.
|
|
max_output_length: Maximum length of the output to be displayed.
|
|
Defaults to 10.
|
|
remove_newline: Whether to remove newlines from the notebook.
|
|
Defaults to False.
|
|
traceback: Whether to return a traceback of the error.
|
|
Defaults to False.
|
|
"""
|
|
self.file_path = path
|
|
self.include_outputs = include_outputs
|
|
self.max_output_length = max_output_length
|
|
self.remove_newline = remove_newline
|
|
self.traceback = traceback
|
|
|
|
def load(
|
|
self,
|
|
) -> List[Document]:
|
|
"""Load documents."""
|
|
p = Path(self.file_path)
|
|
|
|
with open(p, encoding="utf8") as f:
|
|
d = json.load(f)
|
|
|
|
filtered_data = [
|
|
{k: v for (k, v) in cell.items() if k in ["cell_type", "source", "outputs"]}
|
|
for cell in d["cells"]
|
|
]
|
|
|
|
if self.remove_newline:
|
|
filtered_data = list(map(remove_newlines, filtered_data))
|
|
|
|
text = "".join(
|
|
list(
|
|
map(
|
|
lambda x: concatenate_cells(
|
|
x, self.include_outputs, self.max_output_length, self.traceback
|
|
),
|
|
filtered_data,
|
|
)
|
|
)
|
|
)
|
|
|
|
metadata = {"source": str(p)}
|
|
|
|
return [Document(page_content=text, metadata=metadata)]
|