mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
791d59a2c8
Issue: we have several helper functions to import third-party libraries like import_uptrain in [community.callbacks](https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.import_uptrain.html#langchain_community.callbacks.uptrain_callback.import_uptrain). And we have core.utils.utils.guard_import that works exactly for this purpose. The import_<package> functions work inconsistently and rather be private functions. Change: replaced these functions with the guard_import function. Related to #21133
435 lines
14 KiB
Python
435 lines
14 KiB
Python
from copy import deepcopy
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.agents import AgentAction, AgentFinish
|
|
from langchain_core.callbacks import BaseCallbackHandler
|
|
from langchain_core.outputs import LLMResult
|
|
from langchain_core.utils import guard_import
|
|
|
|
|
|
def import_aim() -> Any:
|
|
"""Import the aim python package and raise an error if it is not installed."""
|
|
return guard_import("aim")
|
|
|
|
|
|
class BaseMetadataCallbackHandler:
|
|
"""Callback handler for the metadata and associated function states for callbacks.
|
|
|
|
Attributes:
|
|
step (int): The current step.
|
|
starts (int): The number of times the start method has been called.
|
|
ends (int): The number of times the end method has been called.
|
|
errors (int): The number of times the error method has been called.
|
|
text_ctr (int): The number of times the text method has been called.
|
|
ignore_llm_ (bool): Whether to ignore llm callbacks.
|
|
ignore_chain_ (bool): Whether to ignore chain callbacks.
|
|
ignore_agent_ (bool): Whether to ignore agent callbacks.
|
|
ignore_retriever_ (bool): Whether to ignore retriever callbacks.
|
|
always_verbose_ (bool): Whether to always be verbose.
|
|
chain_starts (int): The number of times the chain start method has been called.
|
|
chain_ends (int): The number of times the chain end method has been called.
|
|
llm_starts (int): The number of times the llm start method has been called.
|
|
llm_ends (int): The number of times the llm end method has been called.
|
|
llm_streams (int): The number of times the text method has been called.
|
|
tool_starts (int): The number of times the tool start method has been called.
|
|
tool_ends (int): The number of times the tool end method has been called.
|
|
agent_ends (int): The number of times the agent end method has been called.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.step = 0
|
|
|
|
self.starts = 0
|
|
self.ends = 0
|
|
self.errors = 0
|
|
self.text_ctr = 0
|
|
|
|
self.ignore_llm_ = False
|
|
self.ignore_chain_ = False
|
|
self.ignore_agent_ = False
|
|
self.ignore_retriever_ = False
|
|
self.always_verbose_ = False
|
|
|
|
self.chain_starts = 0
|
|
self.chain_ends = 0
|
|
|
|
self.llm_starts = 0
|
|
self.llm_ends = 0
|
|
self.llm_streams = 0
|
|
|
|
self.tool_starts = 0
|
|
self.tool_ends = 0
|
|
|
|
self.agent_ends = 0
|
|
|
|
@property
|
|
def always_verbose(self) -> bool:
|
|
"""Whether to call verbose callbacks even if verbose is False."""
|
|
return self.always_verbose_
|
|
|
|
@property
|
|
def ignore_llm(self) -> bool:
|
|
"""Whether to ignore LLM callbacks."""
|
|
return self.ignore_llm_
|
|
|
|
@property
|
|
def ignore_chain(self) -> bool:
|
|
"""Whether to ignore chain callbacks."""
|
|
return self.ignore_chain_
|
|
|
|
@property
|
|
def ignore_agent(self) -> bool:
|
|
"""Whether to ignore agent callbacks."""
|
|
return self.ignore_agent_
|
|
|
|
@property
|
|
def ignore_retriever(self) -> bool:
|
|
"""Whether to ignore retriever callbacks."""
|
|
return self.ignore_retriever_
|
|
|
|
def get_custom_callback_meta(self) -> Dict[str, Any]:
|
|
return {
|
|
"step": self.step,
|
|
"starts": self.starts,
|
|
"ends": self.ends,
|
|
"errors": self.errors,
|
|
"text_ctr": self.text_ctr,
|
|
"chain_starts": self.chain_starts,
|
|
"chain_ends": self.chain_ends,
|
|
"llm_starts": self.llm_starts,
|
|
"llm_ends": self.llm_ends,
|
|
"llm_streams": self.llm_streams,
|
|
"tool_starts": self.tool_starts,
|
|
"tool_ends": self.tool_ends,
|
|
"agent_ends": self.agent_ends,
|
|
}
|
|
|
|
def reset_callback_meta(self) -> None:
|
|
"""Reset the callback metadata."""
|
|
self.step = 0
|
|
|
|
self.starts = 0
|
|
self.ends = 0
|
|
self.errors = 0
|
|
self.text_ctr = 0
|
|
|
|
self.ignore_llm_ = False
|
|
self.ignore_chain_ = False
|
|
self.ignore_agent_ = False
|
|
self.always_verbose_ = False
|
|
|
|
self.chain_starts = 0
|
|
self.chain_ends = 0
|
|
|
|
self.llm_starts = 0
|
|
self.llm_ends = 0
|
|
self.llm_streams = 0
|
|
|
|
self.tool_starts = 0
|
|
self.tool_ends = 0
|
|
|
|
self.agent_ends = 0
|
|
|
|
return None
|
|
|
|
|
|
class AimCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
|
|
"""Callback Handler that logs to Aim.
|
|
|
|
Parameters:
|
|
repo (:obj:`str`, optional): Aim repository path or Repo object to which
|
|
Run object is bound. If skipped, default Repo is used.
|
|
experiment_name (:obj:`str`, optional): Sets Run's `experiment` property.
|
|
'default' if not specified. Can be used later to query runs/sequences.
|
|
system_tracking_interval (:obj:`int`, optional): Sets the tracking interval
|
|
in seconds for system usage metrics (CPU, Memory, etc.). Set to `None`
|
|
to disable system metrics tracking.
|
|
log_system_params (:obj:`bool`, optional): Enable/Disable logging of system
|
|
params such as installed packages, git info, environment variables, etc.
|
|
|
|
This handler will utilize the associated callback method called and formats
|
|
the input of each callback function with metadata regarding the state of LLM run
|
|
and then logs the response to Aim.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
repo: Optional[str] = None,
|
|
experiment_name: Optional[str] = None,
|
|
system_tracking_interval: Optional[int] = 10,
|
|
log_system_params: bool = True,
|
|
) -> None:
|
|
"""Initialize callback handler."""
|
|
|
|
super().__init__()
|
|
|
|
aim = import_aim()
|
|
self.repo = repo
|
|
self.experiment_name = experiment_name
|
|
self.system_tracking_interval = system_tracking_interval
|
|
self.log_system_params = log_system_params
|
|
self._run = aim.Run(
|
|
repo=self.repo,
|
|
experiment=self.experiment_name,
|
|
system_tracking_interval=self.system_tracking_interval,
|
|
log_system_params=self.log_system_params,
|
|
)
|
|
self._run_hash = self._run.hash
|
|
self.action_records: list = []
|
|
|
|
def setup(self, **kwargs: Any) -> None:
|
|
aim = import_aim()
|
|
|
|
if not self._run:
|
|
if self._run_hash:
|
|
self._run = aim.Run(
|
|
self._run_hash,
|
|
repo=self.repo,
|
|
system_tracking_interval=self.system_tracking_interval,
|
|
)
|
|
else:
|
|
self._run = aim.Run(
|
|
repo=self.repo,
|
|
experiment=self.experiment_name,
|
|
system_tracking_interval=self.system_tracking_interval,
|
|
log_system_params=self.log_system_params,
|
|
)
|
|
self._run_hash = self._run.hash
|
|
|
|
if kwargs:
|
|
for key, value in kwargs.items():
|
|
self._run.set(key, value, strict=False)
|
|
|
|
def on_llm_start(
|
|
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
|
) -> None:
|
|
"""Run when LLM starts."""
|
|
aim = import_aim()
|
|
|
|
self.step += 1
|
|
self.llm_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = {"action": "on_llm_start"}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
prompts_res = deepcopy(prompts)
|
|
|
|
self._run.track(
|
|
[aim.Text(prompt) for prompt in prompts_res],
|
|
name="on_llm_start",
|
|
context=resp,
|
|
)
|
|
|
|
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
|
"""Run when LLM ends running."""
|
|
aim = import_aim()
|
|
self.step += 1
|
|
self.llm_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = {"action": "on_llm_end"}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
response_res = deepcopy(response)
|
|
|
|
generated = [
|
|
aim.Text(generation.text)
|
|
for generations in response_res.generations
|
|
for generation in generations
|
|
]
|
|
self._run.track(
|
|
generated,
|
|
name="on_llm_end",
|
|
context=resp,
|
|
)
|
|
|
|
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
|
"""Run when LLM generates a new token."""
|
|
self.step += 1
|
|
self.llm_streams += 1
|
|
|
|
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
|
|
"""Run when LLM errors."""
|
|
self.step += 1
|
|
self.errors += 1
|
|
|
|
def on_chain_start(
|
|
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
|
|
) -> None:
|
|
"""Run when chain starts running."""
|
|
aim = import_aim()
|
|
self.step += 1
|
|
self.chain_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = {"action": "on_chain_start"}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
inputs_res = deepcopy(inputs)
|
|
|
|
self._run.track(
|
|
aim.Text(inputs_res["input"]), name="on_chain_start", context=resp
|
|
)
|
|
|
|
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
|
"""Run when chain ends running."""
|
|
aim = import_aim()
|
|
self.step += 1
|
|
self.chain_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = {"action": "on_chain_end"}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
outputs_res = deepcopy(outputs)
|
|
|
|
self._run.track(
|
|
aim.Text(outputs_res["output"]), name="on_chain_end", context=resp
|
|
)
|
|
|
|
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
|
|
"""Run when chain errors."""
|
|
self.step += 1
|
|
self.errors += 1
|
|
|
|
def on_tool_start(
|
|
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
|
|
) -> None:
|
|
"""Run when tool starts running."""
|
|
aim = import_aim()
|
|
self.step += 1
|
|
self.tool_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = {"action": "on_tool_start"}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self._run.track(aim.Text(input_str), name="on_tool_start", context=resp)
|
|
|
|
def on_tool_end(self, output: Any, **kwargs: Any) -> None:
|
|
"""Run when tool ends running."""
|
|
output = str(output)
|
|
aim = import_aim()
|
|
self.step += 1
|
|
self.tool_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = {"action": "on_tool_end"}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
self._run.track(aim.Text(output), name="on_tool_end", context=resp)
|
|
|
|
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
|
|
"""Run when tool errors."""
|
|
self.step += 1
|
|
self.errors += 1
|
|
|
|
def on_text(self, text: str, **kwargs: Any) -> None:
|
|
"""
|
|
Run when agent is ending.
|
|
"""
|
|
self.step += 1
|
|
self.text_ctr += 1
|
|
|
|
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
|
|
"""Run when agent ends running."""
|
|
aim = import_aim()
|
|
self.step += 1
|
|
self.agent_ends += 1
|
|
self.ends += 1
|
|
|
|
resp = {"action": "on_agent_finish"}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
finish_res = deepcopy(finish)
|
|
|
|
text = "OUTPUT:\n{}\n\nLOG:\n{}".format(
|
|
finish_res.return_values["output"], finish_res.log
|
|
)
|
|
self._run.track(aim.Text(text), name="on_agent_finish", context=resp)
|
|
|
|
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
|
|
"""Run on agent action."""
|
|
aim = import_aim()
|
|
self.step += 1
|
|
self.tool_starts += 1
|
|
self.starts += 1
|
|
|
|
resp = {
|
|
"action": "on_agent_action",
|
|
"tool": action.tool,
|
|
}
|
|
resp.update(self.get_custom_callback_meta())
|
|
|
|
action_res = deepcopy(action)
|
|
|
|
text = "TOOL INPUT:\n{}\n\nLOG:\n{}".format(
|
|
action_res.tool_input, action_res.log
|
|
)
|
|
self._run.track(aim.Text(text), name="on_agent_action", context=resp)
|
|
|
|
def flush_tracker(
|
|
self,
|
|
repo: Optional[str] = None,
|
|
experiment_name: Optional[str] = None,
|
|
system_tracking_interval: Optional[int] = 10,
|
|
log_system_params: bool = True,
|
|
langchain_asset: Any = None,
|
|
reset: bool = True,
|
|
finish: bool = False,
|
|
) -> None:
|
|
"""Flush the tracker and reset the session.
|
|
|
|
Args:
|
|
repo (:obj:`str`, optional): Aim repository path or Repo object to which
|
|
Run object is bound. If skipped, default Repo is used.
|
|
experiment_name (:obj:`str`, optional): Sets Run's `experiment` property.
|
|
'default' if not specified. Can be used later to query runs/sequences.
|
|
system_tracking_interval (:obj:`int`, optional): Sets the tracking interval
|
|
in seconds for system usage metrics (CPU, Memory, etc.). Set to `None`
|
|
to disable system metrics tracking.
|
|
log_system_params (:obj:`bool`, optional): Enable/Disable logging of system
|
|
params such as installed packages, git info, environment variables, etc.
|
|
langchain_asset: The langchain asset to save.
|
|
reset: Whether to reset the session.
|
|
finish: Whether to finish the run.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
if langchain_asset:
|
|
try:
|
|
for key, value in langchain_asset.dict().items():
|
|
self._run.set(key, value, strict=False)
|
|
except Exception:
|
|
pass
|
|
|
|
if finish or reset:
|
|
self._run.close()
|
|
self.reset_callback_meta()
|
|
if reset:
|
|
aim = import_aim()
|
|
self.repo = repo if repo else self.repo
|
|
self.experiment_name = (
|
|
experiment_name if experiment_name else self.experiment_name
|
|
)
|
|
self.system_tracking_interval = (
|
|
system_tracking_interval
|
|
if system_tracking_interval
|
|
else self.system_tracking_interval
|
|
)
|
|
self.log_system_params = (
|
|
log_system_params if log_system_params else self.log_system_params
|
|
)
|
|
|
|
self._run = aim.Run(
|
|
repo=self.repo,
|
|
experiment=self.experiment_name,
|
|
system_tracking_interval=self.system_tracking_interval,
|
|
log_system_params=self.log_system_params,
|
|
)
|
|
self._run_hash = self._run.hash
|
|
self.action_records = []
|