mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
480626dc99
…tch]: import models from community ran ```bash git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g" git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g" git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g" git checkout master libs/langchain/tests/unit_tests/llms git checkout master libs/langchain/tests/unit_tests/chat_models git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py make format cd libs/langchain; make format cd ../experimental; make format cd ../core; make format ```
121 lines
4.4 KiB
Python
121 lines
4.4 KiB
Python
"""Test SmartLLM."""
|
|
from langchain.prompts.prompt import PromptTemplate
|
|
from langchain_community.chat_models import FakeListChatModel
|
|
from langchain_community.llms import FakeListLLM
|
|
|
|
from langchain_experimental.smart_llm import SmartLLMChain
|
|
|
|
|
|
def test_ideation() -> None:
|
|
# test that correct responses are returned
|
|
responses = ["Idea 1", "Idea 2", "Idea 3"]
|
|
llm = FakeListLLM(responses=responses)
|
|
prompt = PromptTemplate(
|
|
input_variables=["product"],
|
|
template="What is a good name for a company that makes {product}?",
|
|
)
|
|
chain = SmartLLMChain(llm=llm, prompt=prompt)
|
|
prompt_value, _ = chain.prep_prompts({"product": "socks"})
|
|
chain.history.question = prompt_value.to_string()
|
|
results = chain._ideate()
|
|
assert results == responses
|
|
|
|
# test that correct number of responses are returned
|
|
for i in range(1, 5):
|
|
responses = [f"Idea {j+1}" for j in range(i)]
|
|
llm = FakeListLLM(responses=responses)
|
|
chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=i)
|
|
prompt_value, _ = chain.prep_prompts({"product": "socks"})
|
|
chain.history.question = prompt_value.to_string()
|
|
results = chain._ideate()
|
|
assert len(results) == i
|
|
|
|
|
|
def test_critique() -> None:
|
|
response = "Test Critique"
|
|
llm = FakeListLLM(responses=[response])
|
|
prompt = PromptTemplate(
|
|
input_variables=["product"],
|
|
template="What is a good name for a company that makes {product}?",
|
|
)
|
|
chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2)
|
|
prompt_value, _ = chain.prep_prompts({"product": "socks"})
|
|
chain.history.question = prompt_value.to_string()
|
|
chain.history.ideas = ["Test Idea 1", "Test Idea 2"]
|
|
result = chain._critique()
|
|
assert result == response
|
|
|
|
|
|
def test_resolver() -> None:
|
|
response = "Test resolution"
|
|
llm = FakeListLLM(responses=[response])
|
|
prompt = PromptTemplate(
|
|
input_variables=["product"],
|
|
template="What is a good name for a company that makes {product}?",
|
|
)
|
|
chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2)
|
|
prompt_value, _ = chain.prep_prompts({"product": "socks"})
|
|
chain.history.question = prompt_value.to_string()
|
|
chain.history.ideas = ["Test Idea 1", "Test Idea 2"]
|
|
chain.history.critique = "Test Critique"
|
|
result = chain._resolve()
|
|
assert result == response
|
|
|
|
|
|
def test_all_steps() -> None:
|
|
joke = "Why did the chicken cross the Mobius strip?"
|
|
response = "Resolution response"
|
|
ideation_llm = FakeListLLM(responses=["Ideation response" for _ in range(20)])
|
|
critique_llm = FakeListLLM(responses=["Critique response" for _ in range(20)])
|
|
resolver_llm = FakeListLLM(responses=[response for _ in range(20)])
|
|
prompt = PromptTemplate(
|
|
input_variables=["joke"],
|
|
template="Explain this joke to me: {joke}?",
|
|
)
|
|
chain = SmartLLMChain(
|
|
ideation_llm=ideation_llm,
|
|
critique_llm=critique_llm,
|
|
resolver_llm=resolver_llm,
|
|
prompt=prompt,
|
|
)
|
|
result = chain(joke)
|
|
assert result["joke"] == joke
|
|
assert result["resolution"] == response
|
|
|
|
|
|
def test_intermediate_output() -> None:
|
|
joke = "Why did the chicken cross the Mobius strip?"
|
|
llm = FakeListLLM(responses=[f"Response {i+1}" for i in range(5)])
|
|
prompt = PromptTemplate(
|
|
input_variables=["joke"],
|
|
template="Explain this joke to me: {joke}?",
|
|
)
|
|
chain = SmartLLMChain(llm=llm, prompt=prompt, return_intermediate_steps=True)
|
|
result = chain(joke)
|
|
assert result["joke"] == joke
|
|
assert result["ideas"] == [f"Response {i+1}" for i in range(3)]
|
|
assert result["critique"] == "Response 4"
|
|
assert result["resolution"] == "Response 5"
|
|
|
|
|
|
def test_all_steps_with_chat_model() -> None:
|
|
joke = "Why did the chicken cross the Mobius strip?"
|
|
response = "Resolution response"
|
|
|
|
ideation_llm = FakeListChatModel(responses=["Ideation response" for _ in range(20)])
|
|
critique_llm = FakeListChatModel(responses=["Critique response" for _ in range(20)])
|
|
resolver_llm = FakeListChatModel(responses=[response for _ in range(20)])
|
|
prompt = PromptTemplate(
|
|
input_variables=["joke"],
|
|
template="Explain this joke to me: {joke}?",
|
|
)
|
|
chain = SmartLLMChain(
|
|
ideation_llm=ideation_llm,
|
|
critique_llm=critique_llm,
|
|
resolver_llm=resolver_llm,
|
|
prompt=prompt,
|
|
)
|
|
result = chain(joke)
|
|
assert result["joke"] == joke
|
|
assert result["resolution"] == response
|