You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
langchain/libs/community/langchain_community/vectorstores/tencentvectordb.py

393 lines
14 KiB
Python

"""Wrapper around the Tencent vector database."""
from __future__ import annotations
import json
import logging
import time
from typing import Any, Dict, Iterable, List, Optional, Tuple
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import guard_import
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger(__name__)
class ConnectionParams:
"""Tencent vector DB Connection params.
See the following documentation for details:
https://cloud.tencent.com/document/product/1709/95820
Attribute:
url (str) : The access address of the vector database server
that the client needs to connect to.
key (str): API key for client to access the vector database server,
which is used for authentication.
username (str) : Account for client to access the vector database server.
timeout (int) : Request Timeout.
"""
def __init__(self, url: str, key: str, username: str = "root", timeout: int = 10):
self.url = url
self.key = key
self.username = username
self.timeout = timeout
class IndexParams:
"""Tencent vector DB Index params.
See the following documentation for details:
https://cloud.tencent.com/document/product/1709/95826
"""
def __init__(
self,
dimension: int,
shard: int = 1,
replicas: int = 2,
index_type: str = "HNSW",
metric_type: str = "L2",
params: Optional[Dict] = None,
):
self.dimension = dimension
self.shard = shard
self.replicas = replicas
self.index_type = index_type
self.metric_type = metric_type
self.params = params
class TencentVectorDB(VectorStore):
"""Tencent VectorDB as a vector store.
In order to use this you need to have a database instance.
See the following documentation for details:
https://cloud.tencent.com/document/product/1709/94951
"""
field_id: str = "id"
field_vector: str = "vector"
field_text: str = "text"
field_metadata: str = "metadata"
def __init__(
self,
embedding: Embeddings,
connection_params: ConnectionParams,
index_params: IndexParams = IndexParams(128),
database_name: str = "LangChainDatabase",
collection_name: str = "LangChainCollection",
drop_old: Optional[bool] = False,
):
self.document = guard_import("tcvectordb.model.document")
tcvectordb = guard_import("tcvectordb")
self.embedding_func = embedding
self.index_params = index_params
self.vdb_client = tcvectordb.VectorDBClient(
url=connection_params.url,
username=connection_params.username,
key=connection_params.key,
timeout=connection_params.timeout,
)
db_list = self.vdb_client.list_databases()
db_exist: bool = False
for db in db_list:
if database_name == db.database_name:
db_exist = True
break
if db_exist:
self.database = self.vdb_client.database(database_name)
else:
self.database = self.vdb_client.create_database(database_name)
try:
self.collection = self.database.describe_collection(collection_name)
if drop_old:
self.database.drop_collection(collection_name)
self._create_collection(collection_name)
except tcvectordb.exceptions.VectorDBException:
self._create_collection(collection_name)
def _create_collection(self, collection_name: str) -> None:
enum = guard_import("tcvectordb.model.enum")
vdb_index = guard_import("tcvectordb.model.index")
index_type = None
for k, v in enum.IndexType.__members__.items():
if k == self.index_params.index_type:
index_type = v
if index_type is None:
raise ValueError("unsupported index_type")
metric_type = None
for k, v in enum.MetricType.__members__.items():
if k == self.index_params.metric_type:
metric_type = v
if metric_type is None:
raise ValueError("unsupported metric_type")
if self.index_params.params is None:
params = vdb_index.HNSWParams(m=16, efconstruction=200)
else:
params = vdb_index.HNSWParams(
m=self.index_params.params.get("M", 16),
efconstruction=self.index_params.params.get("efConstruction", 200),
)
index = vdb_index.Index(
vdb_index.FilterIndex(
self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY
),
vdb_index.VectorIndex(
self.field_vector,
self.index_params.dimension,
index_type,
metric_type,
params,
),
vdb_index.FilterIndex(
self.field_text, enum.FieldType.String, enum.IndexType.FILTER
),
vdb_index.FilterIndex(
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
),
)
self.collection = self.database.create_collection(
name=collection_name,
shard=self.index_params.shard,
replicas=self.index_params.replicas,
description="Collection for LangChain",
index=index,
)
@property
def embeddings(self) -> Embeddings:
return self.embedding_func
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
connection_params: Optional[ConnectionParams] = None,
index_params: Optional[IndexParams] = None,
database_name: str = "LangChainDatabase",
collection_name: str = "LangChainCollection",
drop_old: Optional[bool] = False,
**kwargs: Any,
) -> TencentVectorDB:
"""Create a collection, indexes it with HNSW, and insert data."""
if len(texts) == 0:
raise ValueError("texts is empty")
if connection_params is None:
raise ValueError("connection_params is empty")
try:
embeddings = embedding.embed_documents(texts[0:1])
except NotImplementedError:
embeddings = [embedding.embed_query(texts[0])]
dimension = len(embeddings[0])
if index_params is None:
index_params = IndexParams(dimension=dimension)
else:
index_params.dimension = dimension
vector_db = cls(
embedding=embedding,
connection_params=connection_params,
index_params=index_params,
database_name=database_name,
collection_name=collection_name,
drop_old=drop_old,
)
vector_db.add_texts(texts=texts, metadatas=metadatas)
return vector_db
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
timeout: Optional[int] = None,
batch_size: int = 1000,
**kwargs: Any,
) -> List[str]:
"""Insert text data into TencentVectorDB."""
texts = list(texts)
try:
embeddings = self.embedding_func.embed_documents(texts)
except NotImplementedError:
embeddings = [self.embedding_func.embed_query(x) for x in texts]
if len(embeddings) == 0:
logger.debug("Nothing to insert, skipping.")
return []
pks: list[str] = []
total_count = len(embeddings)
for start in range(0, total_count, batch_size):
# Grab end index
docs = []
end = min(start + batch_size, total_count)
for id in range(start, end, 1):
metadata = "{}"
if metadatas is not None:
metadata = json.dumps(metadatas[id])
doc = self.document.Document(
id="{}-{}-{}".format(time.time_ns(), hash(texts[id]), id),
vector=embeddings[id],
text=texts[id],
metadata=metadata,
)
docs.append(doc)
pks.append(str(id))
self.collection.upsert(docs, timeout)
return pks
def similarity_search(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search against the query string."""
res = self.similarity_search_with_score(
query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return [doc for doc, _ in res]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results with score."""
# Embed the query text.
embedding = self.embedding_func.embed_query(query)
res = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return res
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search against the query string."""
res = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return [doc for doc, _ in res]
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results with score."""
filter = None if expr is None else self.document.Filter(expr)
ef = 10 if param is None else param.get("ef", 10)
res: List[List[Dict]] = self.collection.search(
vectors=[embedding],
filter=filter,
params=self.document.HNSWSearchParams(ef=ef),
retrieve_vector=False,
limit=k,
timeout=timeout,
)
# Organize results.
ret: List[Tuple[Document, float]] = []
if res is None or len(res) == 0:
return ret
for result in res[0]:
meta = result.get(self.field_metadata)
if meta is not None:
meta = json.loads(meta)
doc = Document(page_content=result.get(self.field_text), metadata=meta)
pair = (doc, result.get("score", 0.0))
ret.append(pair)
return ret
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a search and return results that are reordered by MMR."""
embedding = self.embedding_func.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding=embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
param=param,
expr=expr,
timeout=timeout,
**kwargs,
)
def max_marginal_relevance_search_by_vector(
self,
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a search and return results that are reordered by MMR."""
filter = None if expr is None else self.document.Filter(expr)
ef = 10 if param is None else param.get("ef", 10)
res: List[List[Dict]] = self.collection.search(
vectors=[embedding],
filter=filter,
params=self.document.HNSWSearchParams(ef=ef),
retrieve_vector=True,
limit=fetch_k,
timeout=timeout,
)
# Organize results.
documents = []
ordered_result_embeddings = []
for result in res[0]:
meta = result.get(self.field_metadata)
if meta is not None:
meta = json.loads(meta)
doc = Document(page_content=result.get(self.field_text), metadata=meta)
documents.append(doc)
ordered_result_embeddings.append(result.get(self.field_vector))
# Get the new order of results.
new_ordering = maximal_marginal_relevance(
np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult
)
# Reorder the values and return.
ret = []
for x in new_ordering:
# Function can return -1 index
if x == -1:
break
else:
ret.append(documents[x])
return ret