You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
langchain/libs/community/langchain_community/vectorstores/mongodb_atlas.py

374 lines
14 KiB
Python

from __future__ import annotations
import logging
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generator,
Iterable,
List,
Optional,
Tuple,
TypeVar,
Union,
)
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import maximal_marginal_relevance
if TYPE_CHECKING:
from pymongo.collection import Collection
MongoDBDocumentType = TypeVar("MongoDBDocumentType", bound=Dict[str, Any])
logger = logging.getLogger(__name__)
DEFAULT_INSERT_BATCH_SIZE = 100
class MongoDBAtlasVectorSearch(VectorStore):
"""`MongoDB Atlas Vector Search` vector store.
To use, you should have both:
- the ``pymongo`` python package installed
- a connection string associated with a MongoDB Atlas Cluster having deployed an
Atlas Search index
Example:
.. code-block:: python
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_community.embeddings.openai import OpenAIEmbeddings
from pymongo import MongoClient
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = MongoDBAtlasVectorSearch(collection, embeddings)
"""
def __init__(
self,
collection: Collection[MongoDBDocumentType],
embedding: Embeddings,
*,
index_name: str = "default",
text_key: str = "text",
embedding_key: str = "embedding",
relevance_score_fn: str = "cosine",
):
"""
Args:
collection: MongoDB collection to add the texts to.
embedding: Text embedding model to use.
text_key: MongoDB field that will contain the text for each
document.
embedding_key: MongoDB field that will contain the embedding for
each document.
index_name: Name of the Atlas Search index.
relevance_score_fn: The similarity score used for the index.
Currently supported: Euclidean, cosine, and dot product.
"""
self._collection = collection
self._embedding = embedding
self._index_name = index_name
self._text_key = text_key
self._embedding_key = embedding_key
self._relevance_score_fn = relevance_score_fn
@property
def embeddings(self) -> Embeddings:
return self._embedding
def _select_relevance_score_fn(self) -> Callable[[float], float]:
if self._relevance_score_fn == "euclidean":
return self._euclidean_relevance_score_fn
elif self._relevance_score_fn == "dotProduct":
return self._max_inner_product_relevance_score_fn
elif self._relevance_score_fn == "cosine":
return self._cosine_relevance_score_fn
else:
raise NotImplementedError(
f"No relevance score function for ${self._relevance_score_fn}"
)
@classmethod
def from_connection_string(
cls,
connection_string: str,
namespace: str,
embedding: Embeddings,
**kwargs: Any,
) -> MongoDBAtlasVectorSearch:
"""Construct a `MongoDB Atlas Vector Search` vector store
from a MongoDB connection URI.
Args:
connection_string: A valid MongoDB connection URI.
namespace: A valid MongoDB namespace (database and collection).
embedding: The text embedding model to use for the vector store.
Returns:
A new MongoDBAtlasVectorSearch instance.
"""
try:
from importlib.metadata import version
from pymongo import MongoClient
from pymongo.driver_info import DriverInfo
except ImportError:
raise ImportError(
"Could not import pymongo, please install it with "
"`pip install pymongo`."
)
client: MongoClient = MongoClient(
connection_string,
driver=DriverInfo(name="Langchain", version=version("langchain")),
)
db_name, collection_name = namespace.split(".")
collection = client[db_name][collection_name]
return cls(collection, embedding, **kwargs)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[Dict[str, Any]]] = None,
**kwargs: Any,
) -> List:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE)
_metadatas: Union[List, Generator] = metadatas or ({} for _ in texts)
texts_batch = []
metadatas_batch = []
result_ids = []
for i, (text, metadata) in enumerate(zip(texts, _metadatas)):
texts_batch.append(text)
metadatas_batch.append(metadata)
if (i + 1) % batch_size == 0:
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
texts_batch = []
metadatas_batch = []
if texts_batch:
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
return result_ids
def _insert_texts(self, texts: List[str], metadatas: List[Dict[str, Any]]) -> List:
if not texts:
return []
# Embed and create the documents
embeddings = self._embedding.embed_documents(texts)
to_insert = [
{self._text_key: t, self._embedding_key: embedding, **m}
for t, m, embedding in zip(texts, metadatas, embeddings)
]
# insert the documents in MongoDB Atlas
insert_result = self._collection.insert_many(to_insert) # type: ignore
return insert_result.inserted_ids
def _similarity_search_with_score(
self,
embedding: List[float],
k: int = 4,
pre_filter: Optional[Dict] = None,
post_filter_pipeline: Optional[List[Dict]] = None,
) -> List[Tuple[Document, float]]:
params = {
"queryVector": embedding,
"path": self._embedding_key,
"numCandidates": k * 10,
"limit": k,
"index": self._index_name,
}
if pre_filter:
params["filter"] = pre_filter
query = {"$vectorSearch": params}
pipeline = [
query,
{"$set": {"score": {"$meta": "vectorSearchScore"}}},
]
if post_filter_pipeline is not None:
pipeline.extend(post_filter_pipeline)
cursor = self._collection.aggregate(pipeline) # type: ignore[arg-type]
docs = []
for res in cursor:
text = res.pop(self._text_key)
score = res.pop("score")
docs.append((Document(page_content=text, metadata=res), score))
return docs
def similarity_search_with_score(
self,
query: str,
k: int = 4,
pre_filter: Optional[Dict] = None,
post_filter_pipeline: Optional[List[Dict]] = None,
) -> List[Tuple[Document, float]]:
"""Return MongoDB documents most similar to the given query and their scores.
Uses the knnBeta Operator available in MongoDB Atlas Search.
This feature is in early access and available only for evaluation purposes, to
validate functionality, and to gather feedback from a small closed group of
early access users. It is not recommended for production deployments as we
may introduce breaking changes.
For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta
Args:
query: Text to look up documents similar to.
k: (Optional) number of documents to return. Defaults to 4.
pre_filter: (Optional) dictionary of argument(s) to prefilter document
fields on.
post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages
following the knnBeta vector search.
Returns:
List of documents most similar to the query and their scores.
"""
embedding = self._embedding.embed_query(query)
docs = self._similarity_search_with_score(
embedding,
k=k,
pre_filter=pre_filter,
post_filter_pipeline=post_filter_pipeline,
)
return docs
def similarity_search(
self,
query: str,
k: int = 4,
pre_filter: Optional[Dict] = None,
post_filter_pipeline: Optional[List[Dict]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return MongoDB documents most similar to the given query.
Uses the knnBeta Operator available in MongoDB Atlas Search.
This feature is in early access and available only for evaluation purposes, to
validate functionality, and to gather feedback from a small closed group of
early access users. It is not recommended for production deployments as we
may introduce breaking changes.
For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta
Args:
query: Text to look up documents similar to.
k: (Optional) number of documents to return. Defaults to 4.
pre_filter: (Optional) dictionary of argument(s) to prefilter document
fields on.
post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages
following the knnBeta vector search.
Returns:
List of documents most similar to the query and their scores.
"""
docs_and_scores = self.similarity_search_with_score(
query,
k=k,
pre_filter=pre_filter,
post_filter_pipeline=post_filter_pipeline,
)
return [doc for doc, _ in docs_and_scores]
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
pre_filter: Optional[Dict] = None,
post_filter_pipeline: Optional[List[Dict]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return documents selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: (Optional) number of documents to return. Defaults to 4.
fetch_k: (Optional) number of documents to fetch before passing to MMR
algorithm. Defaults to 20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
pre_filter: (Optional) dictionary of argument(s) to prefilter on document
fields.
post_filter_pipeline: (Optional) pipeline of MongoDB aggregation stages
following the knnBeta vector search.
Returns:
List of documents selected by maximal marginal relevance.
"""
query_embedding = self._embedding.embed_query(query)
docs = self._similarity_search_with_score(
query_embedding,
k=fetch_k,
pre_filter=pre_filter,
post_filter_pipeline=post_filter_pipeline,
)
mmr_doc_indexes = maximal_marginal_relevance(
np.array(query_embedding),
[doc.metadata[self._embedding_key] for doc, _ in docs],
k=k,
lambda_mult=lambda_mult,
)
mmr_docs = [docs[i][0] for i in mmr_doc_indexes]
return mmr_docs
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict]] = None,
collection: Optional[Collection[MongoDBDocumentType]] = None,
**kwargs: Any,
) -> MongoDBAtlasVectorSearch:
"""Construct a `MongoDB Atlas Vector Search` vector store from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided MongoDB Atlas Vector Search index
(Lucene)
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from pymongo import MongoClient
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_community.embeddings import OpenAIEmbeddings
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = MongoDBAtlasVectorSearch.from_texts(
texts,
embeddings,
metadatas=metadatas,
collection=collection
)
"""
if collection is None:
raise ValueError("Must provide 'collection' named parameter.")
vectorstore = cls(collection, embedding, **kwargs)
vectorstore.add_texts(texts, metadatas=metadatas)
return vectorstore