mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
70 lines
2.2 KiB
Python
70 lines
2.2 KiB
Python
"""Experimental implementation of jsonformer wrapped LLM."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
from typing import TYPE_CHECKING, Any, List, Optional, cast
|
|
|
|
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
|
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
|
|
|
from langchain_experimental.pydantic_v1 import Field, root_validator
|
|
|
|
if TYPE_CHECKING:
|
|
import jsonformer
|
|
|
|
|
|
def import_jsonformer() -> jsonformer:
|
|
"""Lazily import of the jsonformer package."""
|
|
try:
|
|
import jsonformer
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import jsonformer python package. "
|
|
"Please install it with `pip install jsonformer`."
|
|
)
|
|
return jsonformer
|
|
|
|
|
|
class JsonFormer(HuggingFacePipeline):
|
|
"""Jsonformer wrapped LLM using HuggingFace Pipeline API.
|
|
|
|
This pipeline is experimental and not yet stable.
|
|
"""
|
|
|
|
json_schema: dict = Field(..., description="The JSON Schema to complete.")
|
|
max_new_tokens: int = Field(
|
|
default=200, description="Maximum number of new tokens to generate."
|
|
)
|
|
debug: bool = Field(default=False, description="Debug mode.")
|
|
|
|
# TODO: move away from `root_validator` since it is deprecated in pydantic v2
|
|
# and causes mypy type-checking failures (hence the `type: ignore`)
|
|
@root_validator # type: ignore[call-overload]
|
|
def check_jsonformer_installation(cls, values: dict) -> dict:
|
|
import_jsonformer()
|
|
return values
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
jsonformer = import_jsonformer()
|
|
from transformers import Text2TextGenerationPipeline
|
|
|
|
pipeline = cast(Text2TextGenerationPipeline, self.pipeline)
|
|
|
|
model = jsonformer.Jsonformer(
|
|
model=pipeline.model,
|
|
tokenizer=pipeline.tokenizer,
|
|
json_schema=self.json_schema,
|
|
prompt=prompt,
|
|
max_number_tokens=self.max_new_tokens,
|
|
debug=self.debug,
|
|
)
|
|
text = model()
|
|
return json.dumps(text)
|