mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
3f0357f94a
# Add summarization task type for HuggingFace APIs Add summarization task type for HuggingFace APIs. This task type is described by [HuggingFace inference API](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task) My project utilizes LangChain to connect multiple LLMs, including various HuggingFace models that support the summarization task. Integrating this task type is highly convenient and beneficial. Fixes #4720
119 lines
3.5 KiB
Python
119 lines
3.5 KiB
Python
"""Test Self-hosted LLMs."""
|
|
import pickle
|
|
from typing import Any, List, Optional
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
from langchain.llms import SelfHostedHuggingFaceLLM, SelfHostedPipeline
|
|
|
|
model_reqs = ["pip:./", "transformers", "torch"]
|
|
|
|
|
|
def get_remote_instance() -> Any:
|
|
"""Get remote instance for testing."""
|
|
import runhouse as rh
|
|
|
|
return rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False)
|
|
|
|
|
|
def test_self_hosted_huggingface_pipeline_text_generation() -> None:
|
|
"""Test valid call to self-hosted HuggingFace text generation model."""
|
|
gpu = get_remote_instance()
|
|
llm = SelfHostedHuggingFaceLLM(
|
|
model_id="gpt2",
|
|
task="text-generation",
|
|
model_kwargs={"n_positions": 1024},
|
|
hardware=gpu,
|
|
model_reqs=model_reqs,
|
|
)
|
|
output = llm("Say foo:") # type: ignore
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_self_hosted_huggingface_pipeline_text2text_generation() -> None:
|
|
"""Test valid call to self-hosted HuggingFace text2text generation model."""
|
|
gpu = get_remote_instance()
|
|
llm = SelfHostedHuggingFaceLLM(
|
|
model_id="google/flan-t5-small",
|
|
task="text2text-generation",
|
|
hardware=gpu,
|
|
model_reqs=model_reqs,
|
|
)
|
|
output = llm("Say foo:") # type: ignore
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_self_hosted_huggingface_pipeline_summarization() -> None:
|
|
"""Test valid call to self-hosted HuggingFace summarization model."""
|
|
gpu = get_remote_instance()
|
|
llm = SelfHostedHuggingFaceLLM(
|
|
model_id="facebook/bart-large-cnn",
|
|
task="summarization",
|
|
hardware=gpu,
|
|
model_reqs=model_reqs,
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def load_pipeline() -> Any:
|
|
"""Load pipeline for testing."""
|
|
model_id = "gpt2"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
pipe = pipeline(
|
|
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
|
|
)
|
|
return pipe
|
|
|
|
|
|
def inference_fn(pipeline: Any, prompt: str, stop: Optional[List[str]] = None) -> str:
|
|
"""Inference function for testing."""
|
|
return pipeline(prompt)[0]["generated_text"]
|
|
|
|
|
|
def test_init_with_local_pipeline() -> None:
|
|
"""Test initialization with a self-hosted HF pipeline."""
|
|
gpu = get_remote_instance()
|
|
pipeline = load_pipeline()
|
|
llm = SelfHostedPipeline.from_pipeline(
|
|
pipeline=pipeline,
|
|
hardware=gpu,
|
|
model_reqs=model_reqs,
|
|
inference_fn=inference_fn,
|
|
)
|
|
output = llm("Say foo:") # type: ignore
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_init_with_pipeline_path() -> None:
|
|
"""Test initialization with a self-hosted HF pipeline."""
|
|
gpu = get_remote_instance()
|
|
pipeline = load_pipeline()
|
|
import runhouse as rh
|
|
|
|
rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(
|
|
gpu, path="models"
|
|
)
|
|
llm = SelfHostedPipeline.from_pipeline(
|
|
pipeline="models/pipeline.pkl",
|
|
hardware=gpu,
|
|
model_reqs=model_reqs,
|
|
inference_fn=inference_fn,
|
|
)
|
|
output = llm("Say foo:") # type: ignore
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_init_with_pipeline_fn() -> None:
|
|
"""Test initialization with a self-hosted HF pipeline."""
|
|
gpu = get_remote_instance()
|
|
llm = SelfHostedPipeline(
|
|
model_load_fn=load_pipeline,
|
|
hardware=gpu,
|
|
model_reqs=model_reqs,
|
|
inference_fn=inference_fn,
|
|
)
|
|
output = llm("Say foo:") # type: ignore
|
|
assert isinstance(output, str)
|