langchain/langchain/cache.py
Harrison Chase e49f1e628c
Harrison/gpt cache (#2744)
Co-authored-by: SimFG <bang.fu@zilliz.com>
2023-04-12 14:16:58 -07:00

263 lines
9.1 KiB
Python

"""Beta Feature: base interface for cache."""
import json
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Tuple
from sqlalchemy import Column, Integer, String, create_engine, select
from sqlalchemy.engine.base import Engine
from sqlalchemy.orm import Session
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from langchain.schema import Generation
RETURN_VAL_TYPE = List[Generation]
class BaseCache(ABC):
"""Base interface for cache."""
@abstractmethod
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
@abstractmethod
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
class InMemoryCache(BaseCache):
"""Cache that stores things in memory."""
def __init__(self) -> None:
"""Initialize with empty cache."""
self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
return self._cache.get((prompt, llm_string), None)
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
self._cache[(prompt, llm_string)] = return_val
Base = declarative_base()
class FullLLMCache(Base): # type: ignore
"""SQLite table for full LLM Cache (all generations)."""
__tablename__ = "full_llm_cache"
prompt = Column(String, primary_key=True)
llm = Column(String, primary_key=True)
idx = Column(Integer, primary_key=True)
response = Column(String)
class SQLAlchemyCache(BaseCache):
"""Cache that uses SQAlchemy as a backend."""
def __init__(self, engine: Engine, cache_schema: Any = FullLLMCache):
"""Initialize by creating all tables."""
self.engine = engine
self.cache_schema = cache_schema
self.cache_schema.metadata.create_all(self.engine)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
stmt = (
select(self.cache_schema.response)
.where(self.cache_schema.prompt == prompt)
.where(self.cache_schema.llm == llm_string)
.order_by(self.cache_schema.idx)
)
with Session(self.engine) as session:
generations = [Generation(text=row[0]) for row in session.execute(stmt)]
if len(generations) > 0:
return generations
return None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Look up based on prompt and llm_string."""
for i, generation in enumerate(return_val):
item = self.cache_schema(
prompt=prompt, llm=llm_string, response=generation.text, idx=i
)
with Session(self.engine) as session, session.begin():
session.merge(item)
class SQLiteCache(SQLAlchemyCache):
"""Cache that uses SQLite as a backend."""
def __init__(self, database_path: str = ".langchain.db"):
"""Initialize by creating the engine and all tables."""
engine = create_engine(f"sqlite:///{database_path}")
super().__init__(engine)
class RedisCache(BaseCache):
"""Cache that uses Redis as a backend."""
def __init__(self, redis_: Any):
"""Initialize by passing in Redis instance."""
try:
from redis import Redis
except ImportError:
raise ValueError(
"Could not import redis python package. "
"Please install it with `pip install redis`."
)
if not isinstance(redis_, Redis):
raise ValueError("Please pass in Redis object.")
self.redis = redis_
def _key(self, prompt: str, llm_string: str, idx: int) -> str:
"""Compute key from prompt, llm_string, and idx."""
return str(hash(prompt + llm_string)) + "_" + str(idx)
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up based on prompt and llm_string."""
idx = 0
generations = []
while self.redis.get(self._key(prompt, llm_string, idx)):
result = self.redis.get(self._key(prompt, llm_string, idx))
if not result:
break
elif isinstance(result, bytes):
result = result.decode()
generations.append(Generation(text=result))
idx += 1
return generations if generations else None
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
for i, generation in enumerate(return_val):
self.redis.set(self._key(prompt, llm_string, i), generation.text)
class GPTCache(BaseCache):
"""Cache that uses GPTCache as a backend."""
def __init__(self, init_func: Callable[[Any], None]):
"""Initialize by passing in the `init` GPTCache func
Args:
init_func (Callable[[Any], None]): init `GPTCache` function
Example:
.. code-block:: python
import gptcache
from gptcache.processor.pre import get_prompt
from gptcache.manager.factory import get_data_manager
# Avoid multiple caches using the same file,
causing different llm model caches to affect each other
i = 0
file_prefix = "data_map"
def init_gptcache_map(cache_obj: gptcache.Cache):
nonlocal i
cache_path = f'{file_prefix}_{i}.txt'
cache_obj.init(
pre_embedding_func=get_prompt,
data_manager=get_data_manager(data_path=cache_path),
)
i += 1
langchain.llm_cache = GPTCache(init_gptcache_map)
"""
try:
import gptcache # noqa: F401
except ImportError:
raise ValueError(
"Could not import gptcache python package. "
"Please install it with `pip install gptcache`."
)
self.init_gptcache_func: Callable[[Any], None] = init_func
self.gptcache_dict: Dict[str, Any] = {}
@staticmethod
def _update_cache_callback_none(*_: Any, **__: Any) -> None:
"""When updating cached data, do nothing.
Because currently only cached queries are processed."""
return None
@staticmethod
def _llm_handle_none(*_: Any, **__: Any) -> None:
"""Do nothing on a cache miss"""
return None
@staticmethod
def _cache_data_converter(data: str) -> RETURN_VAL_TYPE:
"""Convert the `data` in the cache to the `RETURN_VAL_TYPE` data format."""
return [Generation(**generation_dict) for generation_dict in json.loads(data)]
def _get_gptcache(self, llm_string: str) -> Any:
"""Get a cache object.
When the corresponding llm model cache does not exist, it will be created."""
from gptcache import Cache
_gptcache = self.gptcache_dict.get(llm_string, None)
if _gptcache is None:
_gptcache = Cache()
self.init_gptcache_func(_gptcache)
self.gptcache_dict[llm_string] = _gptcache
return _gptcache
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
"""Look up the cache data.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then retrieve the data from the cache based on the `prompt`.
"""
from gptcache.adapter.adapter import adapt
_gptcache = self.gptcache_dict.get(llm_string)
if _gptcache is None:
return None
res = adapt(
GPTCache._llm_handle_none,
GPTCache._cache_data_converter,
GPTCache._update_cache_callback_none,
cache_obj=_gptcache,
prompt=prompt,
)
return res
@staticmethod
def _update_cache_callback(
llm_data: RETURN_VAL_TYPE, update_cache_func: Callable[[Any], None]
) -> None:
"""Save the `llm_data` to cache storage"""
handled_data = json.dumps([generation.dict() for generation in llm_data])
update_cache_func(handled_data)
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache.
First, retrieve the corresponding cache object using the `llm_string` parameter,
and then store the `prompt` and `return_val` in the cache object.
"""
from gptcache.adapter.adapter import adapt
_gptcache = self._get_gptcache(llm_string)
def llm_handle(*_: Any, **__: Any) -> RETURN_VAL_TYPE:
return return_val
return adapt(
llm_handle,
GPTCache._cache_data_converter,
GPTCache._update_cache_callback,
cache_obj=_gptcache,
cache_skip=True,
prompt=prompt,
)