mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
e49f1e628c
Co-authored-by: SimFG <bang.fu@zilliz.com>
263 lines
9.1 KiB
Python
263 lines
9.1 KiB
Python
"""Beta Feature: base interface for cache."""
|
|
import json
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple
|
|
|
|
from sqlalchemy import Column, Integer, String, create_engine, select
|
|
from sqlalchemy.engine.base import Engine
|
|
from sqlalchemy.orm import Session
|
|
|
|
try:
|
|
from sqlalchemy.orm import declarative_base
|
|
except ImportError:
|
|
from sqlalchemy.ext.declarative import declarative_base
|
|
|
|
from langchain.schema import Generation
|
|
|
|
RETURN_VAL_TYPE = List[Generation]
|
|
|
|
|
|
class BaseCache(ABC):
|
|
"""Base interface for cache."""
|
|
|
|
@abstractmethod
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
|
|
@abstractmethod
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
|
|
|
|
class InMemoryCache(BaseCache):
|
|
"""Cache that stores things in memory."""
|
|
|
|
def __init__(self) -> None:
|
|
"""Initialize with empty cache."""
|
|
self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
return self._cache.get((prompt, llm_string), None)
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
self._cache[(prompt, llm_string)] = return_val
|
|
|
|
|
|
Base = declarative_base()
|
|
|
|
|
|
class FullLLMCache(Base): # type: ignore
|
|
"""SQLite table for full LLM Cache (all generations)."""
|
|
|
|
__tablename__ = "full_llm_cache"
|
|
prompt = Column(String, primary_key=True)
|
|
llm = Column(String, primary_key=True)
|
|
idx = Column(Integer, primary_key=True)
|
|
response = Column(String)
|
|
|
|
|
|
class SQLAlchemyCache(BaseCache):
|
|
"""Cache that uses SQAlchemy as a backend."""
|
|
|
|
def __init__(self, engine: Engine, cache_schema: Any = FullLLMCache):
|
|
"""Initialize by creating all tables."""
|
|
self.engine = engine
|
|
self.cache_schema = cache_schema
|
|
self.cache_schema.metadata.create_all(self.engine)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
stmt = (
|
|
select(self.cache_schema.response)
|
|
.where(self.cache_schema.prompt == prompt)
|
|
.where(self.cache_schema.llm == llm_string)
|
|
.order_by(self.cache_schema.idx)
|
|
)
|
|
with Session(self.engine) as session:
|
|
generations = [Generation(text=row[0]) for row in session.execute(stmt)]
|
|
if len(generations) > 0:
|
|
return generations
|
|
return None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Look up based on prompt and llm_string."""
|
|
for i, generation in enumerate(return_val):
|
|
item = self.cache_schema(
|
|
prompt=prompt, llm=llm_string, response=generation.text, idx=i
|
|
)
|
|
with Session(self.engine) as session, session.begin():
|
|
session.merge(item)
|
|
|
|
|
|
class SQLiteCache(SQLAlchemyCache):
|
|
"""Cache that uses SQLite as a backend."""
|
|
|
|
def __init__(self, database_path: str = ".langchain.db"):
|
|
"""Initialize by creating the engine and all tables."""
|
|
engine = create_engine(f"sqlite:///{database_path}")
|
|
super().__init__(engine)
|
|
|
|
|
|
class RedisCache(BaseCache):
|
|
"""Cache that uses Redis as a backend."""
|
|
|
|
def __init__(self, redis_: Any):
|
|
"""Initialize by passing in Redis instance."""
|
|
try:
|
|
from redis import Redis
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import redis python package. "
|
|
"Please install it with `pip install redis`."
|
|
)
|
|
if not isinstance(redis_, Redis):
|
|
raise ValueError("Please pass in Redis object.")
|
|
self.redis = redis_
|
|
|
|
def _key(self, prompt: str, llm_string: str, idx: int) -> str:
|
|
"""Compute key from prompt, llm_string, and idx."""
|
|
return str(hash(prompt + llm_string)) + "_" + str(idx)
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up based on prompt and llm_string."""
|
|
idx = 0
|
|
generations = []
|
|
while self.redis.get(self._key(prompt, llm_string, idx)):
|
|
result = self.redis.get(self._key(prompt, llm_string, idx))
|
|
if not result:
|
|
break
|
|
elif isinstance(result, bytes):
|
|
result = result.decode()
|
|
generations.append(Generation(text=result))
|
|
idx += 1
|
|
return generations if generations else None
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache based on prompt and llm_string."""
|
|
for i, generation in enumerate(return_val):
|
|
self.redis.set(self._key(prompt, llm_string, i), generation.text)
|
|
|
|
|
|
class GPTCache(BaseCache):
|
|
"""Cache that uses GPTCache as a backend."""
|
|
|
|
def __init__(self, init_func: Callable[[Any], None]):
|
|
"""Initialize by passing in the `init` GPTCache func
|
|
|
|
Args:
|
|
init_func (Callable[[Any], None]): init `GPTCache` function
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
import gptcache
|
|
from gptcache.processor.pre import get_prompt
|
|
from gptcache.manager.factory import get_data_manager
|
|
|
|
# Avoid multiple caches using the same file,
|
|
causing different llm model caches to affect each other
|
|
i = 0
|
|
file_prefix = "data_map"
|
|
|
|
def init_gptcache_map(cache_obj: gptcache.Cache):
|
|
nonlocal i
|
|
cache_path = f'{file_prefix}_{i}.txt'
|
|
cache_obj.init(
|
|
pre_embedding_func=get_prompt,
|
|
data_manager=get_data_manager(data_path=cache_path),
|
|
)
|
|
i += 1
|
|
|
|
langchain.llm_cache = GPTCache(init_gptcache_map)
|
|
|
|
"""
|
|
try:
|
|
import gptcache # noqa: F401
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import gptcache python package. "
|
|
"Please install it with `pip install gptcache`."
|
|
)
|
|
self.init_gptcache_func: Callable[[Any], None] = init_func
|
|
self.gptcache_dict: Dict[str, Any] = {}
|
|
|
|
@staticmethod
|
|
def _update_cache_callback_none(*_: Any, **__: Any) -> None:
|
|
"""When updating cached data, do nothing.
|
|
|
|
Because currently only cached queries are processed."""
|
|
return None
|
|
|
|
@staticmethod
|
|
def _llm_handle_none(*_: Any, **__: Any) -> None:
|
|
"""Do nothing on a cache miss"""
|
|
return None
|
|
|
|
@staticmethod
|
|
def _cache_data_converter(data: str) -> RETURN_VAL_TYPE:
|
|
"""Convert the `data` in the cache to the `RETURN_VAL_TYPE` data format."""
|
|
return [Generation(**generation_dict) for generation_dict in json.loads(data)]
|
|
|
|
def _get_gptcache(self, llm_string: str) -> Any:
|
|
"""Get a cache object.
|
|
|
|
When the corresponding llm model cache does not exist, it will be created."""
|
|
from gptcache import Cache
|
|
|
|
_gptcache = self.gptcache_dict.get(llm_string, None)
|
|
if _gptcache is None:
|
|
_gptcache = Cache()
|
|
self.init_gptcache_func(_gptcache)
|
|
self.gptcache_dict[llm_string] = _gptcache
|
|
return _gptcache
|
|
|
|
def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
|
|
"""Look up the cache data.
|
|
First, retrieve the corresponding cache object using the `llm_string` parameter,
|
|
and then retrieve the data from the cache based on the `prompt`.
|
|
"""
|
|
from gptcache.adapter.adapter import adapt
|
|
|
|
_gptcache = self.gptcache_dict.get(llm_string)
|
|
if _gptcache is None:
|
|
return None
|
|
res = adapt(
|
|
GPTCache._llm_handle_none,
|
|
GPTCache._cache_data_converter,
|
|
GPTCache._update_cache_callback_none,
|
|
cache_obj=_gptcache,
|
|
prompt=prompt,
|
|
)
|
|
return res
|
|
|
|
@staticmethod
|
|
def _update_cache_callback(
|
|
llm_data: RETURN_VAL_TYPE, update_cache_func: Callable[[Any], None]
|
|
) -> None:
|
|
"""Save the `llm_data` to cache storage"""
|
|
handled_data = json.dumps([generation.dict() for generation in llm_data])
|
|
update_cache_func(handled_data)
|
|
|
|
def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
|
|
"""Update cache.
|
|
First, retrieve the corresponding cache object using the `llm_string` parameter,
|
|
and then store the `prompt` and `return_val` in the cache object.
|
|
"""
|
|
from gptcache.adapter.adapter import adapt
|
|
|
|
_gptcache = self._get_gptcache(llm_string)
|
|
|
|
def llm_handle(*_: Any, **__: Any) -> RETURN_VAL_TYPE:
|
|
return return_val
|
|
|
|
return adapt(
|
|
llm_handle,
|
|
GPTCache._cache_data_converter,
|
|
GPTCache._update_cache_callback,
|
|
cache_obj=_gptcache,
|
|
cache_skip=True,
|
|
prompt=prompt,
|
|
)
|