mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
fa5d49f2c1
ran ```bash g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g" g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g" g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g" g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g" g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g" g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g" gco master libs/langchain/tests/unit_tests/*/test_imports.py gco master libs/langchain/tests/unit_tests/**/test_public_api.py ```
36 lines
1017 B
Python
36 lines
1017 B
Python
import os
|
|
from pathlib import Path
|
|
|
|
from langchain_community.vectorstores import Chroma
|
|
from langchain_experimental.open_clip import OpenCLIPEmbeddings
|
|
|
|
# Load images
|
|
img_dump_path = Path(__file__).parent / "docs/"
|
|
rel_img_dump_path = img_dump_path.relative_to(Path.cwd())
|
|
image_uris = sorted(
|
|
[
|
|
os.path.join(rel_img_dump_path, image_name)
|
|
for image_name in os.listdir(rel_img_dump_path)
|
|
if image_name.endswith(".jpg")
|
|
]
|
|
)
|
|
|
|
# Index
|
|
vectorstore = Path(__file__).parent / "chroma_db_multi_modal"
|
|
re_vectorstore_path = vectorstore.relative_to(Path.cwd())
|
|
|
|
# Load embedding function
|
|
print("Loading embedding function")
|
|
embedding = OpenCLIPEmbeddings(model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k")
|
|
|
|
# Create chroma
|
|
vectorstore_mmembd = Chroma(
|
|
collection_name="multi-modal-rag",
|
|
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
|
|
embedding_function=embedding,
|
|
)
|
|
|
|
# Add images
|
|
print("Embedding images")
|
|
vectorstore_mmembd.add_images(uris=image_uris)
|