551640a030
poetry will default to latest versions without |
||
---|---|---|
.. | ||
cassandra_entomology_rag | ||
.env.template | ||
pyproject.toml | ||
README.md | ||
sources.txt |
cassandra-entomology-rag
This template will perform RAG using Apache Cassandra® or Astra DB through CQL (Cassandra
vector store class)
Environment Setup
For the setup, you will require:
- an Astra Vector Database. You must have a Database Administrator token, specifically the string starting with
AstraCS:...
. - Database ID.
- an OpenAI API Key. (More info here)
You may also use a regular Cassandra cluster. In this case, provide the USE_CASSANDRA_CLUSTER
entry as shown in .env.template
and the subsequent environment variables to specify how to connect to it.
The connection parameters and secrets must be provided through environment variables. Refer to .env.template
for the required variables.
Usage
To use this package, you should first have the LangChain CLI installed:
pip install -U langchain-cli
To create a new LangChain project and install this as the only package, you can do:
langchain app new my-app --package cassandra-entomology-rag
If you want to add this to an existing project, you can just run:
langchain app add cassandra-entomology-rag
And add the following code to your server.py
file:
from cassandra_entomology_rag import chain as cassandra_entomology_rag_chain
add_routes(app, cassandra_entomology_rag_chain, path="/cassandra-entomology-rag")
(Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. You can sign up for LangSmith here. If you don't have access, you can skip this section
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
If you are inside this directory, then you can spin up a LangServe instance directly by:
langchain serve
This will start the FastAPI app with a server is running locally at http://localhost:8000
We can see all templates at http://127.0.0.1:8000/docs We can access the playground at http://127.0.0.1:8000/cassandra-entomology-rag/playground
We can access the template from code with:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/cassandra-entomology-rag")
Reference
Stand-alone repo with LangServe chain: here.