mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
66848871fc
* OpenCLIP embeddings * GPT-4V --------- Co-authored-by: Erick Friis <erick@langchain.dev>
59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
import os
|
|
from pathlib import Path
|
|
|
|
import pypdfium2 as pdfium
|
|
from langchain.vectorstores import Chroma
|
|
from langchain_experimental.open_clip import OpenCLIPEmbeddings
|
|
|
|
|
|
def get_images_from_pdf(pdf_path, img_dump_path):
|
|
"""
|
|
Extract images from each page of a PDF document and save as JPEG files.
|
|
|
|
:param pdf_path: A string representing the path to the PDF file.
|
|
:param img_dump_path: A string representing the path to dummp images.
|
|
"""
|
|
pdf = pdfium.PdfDocument(pdf_path)
|
|
n_pages = len(pdf)
|
|
for page_number in range(n_pages):
|
|
page = pdf.get_page(page_number)
|
|
bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0))
|
|
pil_image = bitmap.to_pil()
|
|
pil_image.save(f"{img_dump_path}/img_{page_number + 1}.jpg", format="JPEG")
|
|
|
|
|
|
# Load PDF
|
|
doc_path = Path(__file__).parent / "docs/DDOG_Q3_earnings_deck.pdf"
|
|
img_dump_path = Path(__file__).parent / "docs/"
|
|
rel_doc_path = doc_path.relative_to(Path.cwd())
|
|
rel_img_dump_path = img_dump_path.relative_to(Path.cwd())
|
|
print("pdf index")
|
|
pil_images = get_images_from_pdf(rel_doc_path, rel_img_dump_path)
|
|
print("done")
|
|
vectorstore = Path(__file__).parent / "chroma_db_multi_modal"
|
|
re_vectorstore_path = vectorstore.relative_to(Path.cwd())
|
|
|
|
# Load embedding function
|
|
print("Loading embedding function")
|
|
embedding = OpenCLIPEmbeddings(model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k")
|
|
|
|
# Create chroma
|
|
vectorstore_mmembd = Chroma(
|
|
collection_name="multi-modal-rag",
|
|
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
|
|
embedding_function=embedding,
|
|
)
|
|
|
|
# Get image URIs
|
|
image_uris = sorted(
|
|
[
|
|
os.path.join(rel_img_dump_path, image_name)
|
|
for image_name in os.listdir(rel_img_dump_path)
|
|
if image_name.endswith(".jpg")
|
|
]
|
|
)
|
|
|
|
# Add images
|
|
print("Embedding images")
|
|
vectorstore_mmembd.add_images(uris=image_uris)
|